

Monotherapy with the Novel Capsid Assembly Modulator ALG-000184 for up to 96 Weeks Results in Profound and Sustained HBV DNA Suppression in Untreated Subjects with Chronic HBV Infection

Man-Fung Yuen¹, Kosh Agarwal², Alina Jucov³, Alexei Haceatrean³, Min Wu⁴, Kha Le⁴, Thanh Van⁴, Jen Rito⁴, Lawrence Blatt⁴, Sushmita Chanda⁴, Tse-I Lin⁴, Hardean E. Achneck⁴, Edward J. Gane⁵

1.Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hongkong, China; 2. King's College Hospital, Institute of Liver Studies, London, United Kingdom; 3. ARENSIA Exploratory Medicine, Republican Clinical Hospital and Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova; 4. Aligos Therapeutics, Inc., South San Francisco, United States; 6. Faculty of Medicine, University of Auckland, Auckland, New Zealand.

BACKGROUND AND AIMS

- The maximum reduction in HBV DNA with sustained suppression in chronic HBV infection patients undergoing antiviral treatment has been associated with favorable disease outcomes¹.
- ALG-000184 is a prodrug of the Class E capsid assembly modulator (empty), ALG-001075, which has demonstrated potent, pan-genotypic antiviral activity in vitro through a dual mechanism of action $(MOA)^2$:
- inhibition of pg-RNA encapsidation (1st MOA); - inhibition of HBV antigen production by blocking cccDNA establishment (2nd MOA).
- The ongoing phase 1 study ALG-000184-201 (NCT04536337) evaluates the safety, tolerability, and antiviral activity of ALG-000184 in healthy volunteers (HVs), and treatment-naïve (TN) or currently-not-treated (CNT) subjects with chronic HBV infection. Previously published data demonstrated a favorable safety profile of ALG-000184 in HVs and the patient population. Furthermore, in TN/CNT HBeAg-positive patients with chronic HBV infection receiving 300 mg ALG-000184 ± entecavir (ETV) ≤ 96 weeks, multiple-log reductions of HBV DNA, HBV RNA, and HBV antigens were observed^{3,4}.

METHODS

In study ALG-000184-201, a total of 10 TN/CNT HBeAgpositive and 11 HBeAg-negative subjects were enrolled (Table 1) and received open-label monotherapy with 300 mg ALG-000184 for ≤ 96 weeks. Subsequently, subjects entered up to 8 weeks of follow-up, during which only nucleos(t)ide analogue (NA) was dosed (Fig.1).

Figure 1. Study Design

N=21 HBeAg+ (n=10) HBeAg- (n=11)	ALG-000184 300 mg monotherapy x 96 weeks	Follow-up (± NA) x 8 weeks

Throughout the study, safety assessments and viral markers were regularly collected. The Study Review Committee and ALT Flare Committee reviewed clinical safety data on a regular basis. Lower Limit of Quantitation (LLOQ) of HBV DNA, HBV RNA, HBsAg and HBeAg assays were 10 IU/mL, 10 copies/mL, 0.05 IU/mL, 0.01 PEI U/mL, respectively. LLOQs of HBcrAg were 3 log₁₀ U/mL for HBeAg-positive and 1.8 log₁₀ U/mL for HBeAg-negative, respectively.

REFERENCES

1. AASLD, EASL, APASL guidelines; 2. Sandrine Vendeville et. al, Journal of Medicinal Chemistry 67:23; 3. Hou JL oral 101813 APASL 2024; 4. MF Yuen OP0394 APASL 2025

ACKNOWLEDGEMENT

The authors wish to thank the subjects and their families for their willingness to engage in this important research; the clinical site staff who facilitated the study.

RESULTS

Table 1. Baseline Characteristics and Demographics

	HBeAg-positive	HBeAg-negative
	N=10	N=11
Age, years, mean (SEM)	36.8 (2.9)	48.5 (3.1)
Male, N (%)	7 (70)	6 (55)
Asian, N (%)	9 (90)	3 (27)
BMI, kg/m ² , mean (SEM)	22.4 (0.8)	26.0 (1.1)
HBV Genotype B/C, N (%)	B: 5 (50); C: 4 (40); D: 1 (10)	B:2(18), C:1(9), D:7(64), A:1(9)
HBV DNA, log ₁₀ IU/mL, mean (SEM)	8.0 (0.2)	4.3 (0.2)
HBV RNA, log ₁₀ copies/mL, mean (SEM)	5.3 (0.4)	2.0 (0.3)
HBsAg, log ₁₀ IU/mL, mean (SEM)	4.3 (0.1)	3.5 (0.2)
HBeAg, log ₁₀ PEI U/mL, mean (SEM)	2.6 (0.3)	Not applicable
HBcrAg, log ₁₀ U/mL, mean (SEM)	8.3 (0.2)	3.1 (0.3)
ALT, U/L, mean (SEM)	60.7 (36.9)	35 (14.5)

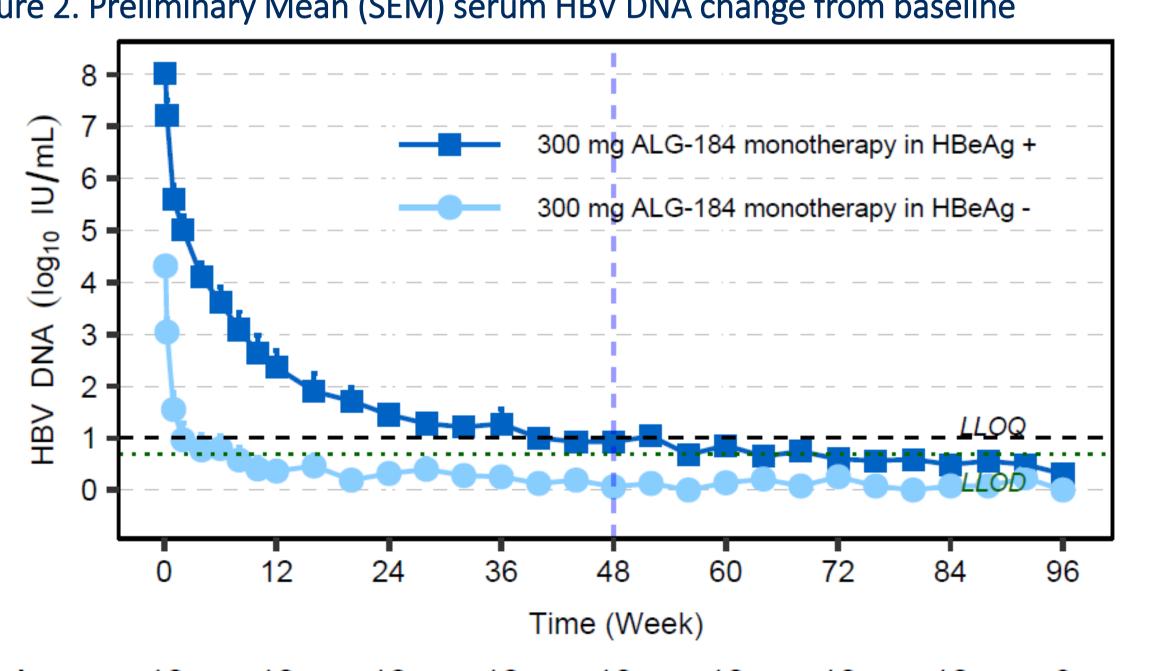
SAFETY

300 mg ALG-000184 ≤ 96 had a favorable safety profile (Table 2).

Table 2. Safety Summary

	HBeAg-positive	HBeAg-negative
Numbers of subjects with	N=10	N=11
• at least one TEAE, n (%)	9 (90)	6 (55)
• SAE	0	0
 TEAE leading to study drug discontinuation 	0	0
• TEAE Grade ≥3	3*	2*,#

* Grade ≥3 TEAEs of ALT/AST elevation were observed in 3 HBeAg-positive and 1 HBeAg-negative subjects with preserved synthetic and excretory functions. All events resolved in the setting of continued ALG-000184 dosing and were not considered clinically concerning by the ALT Flare

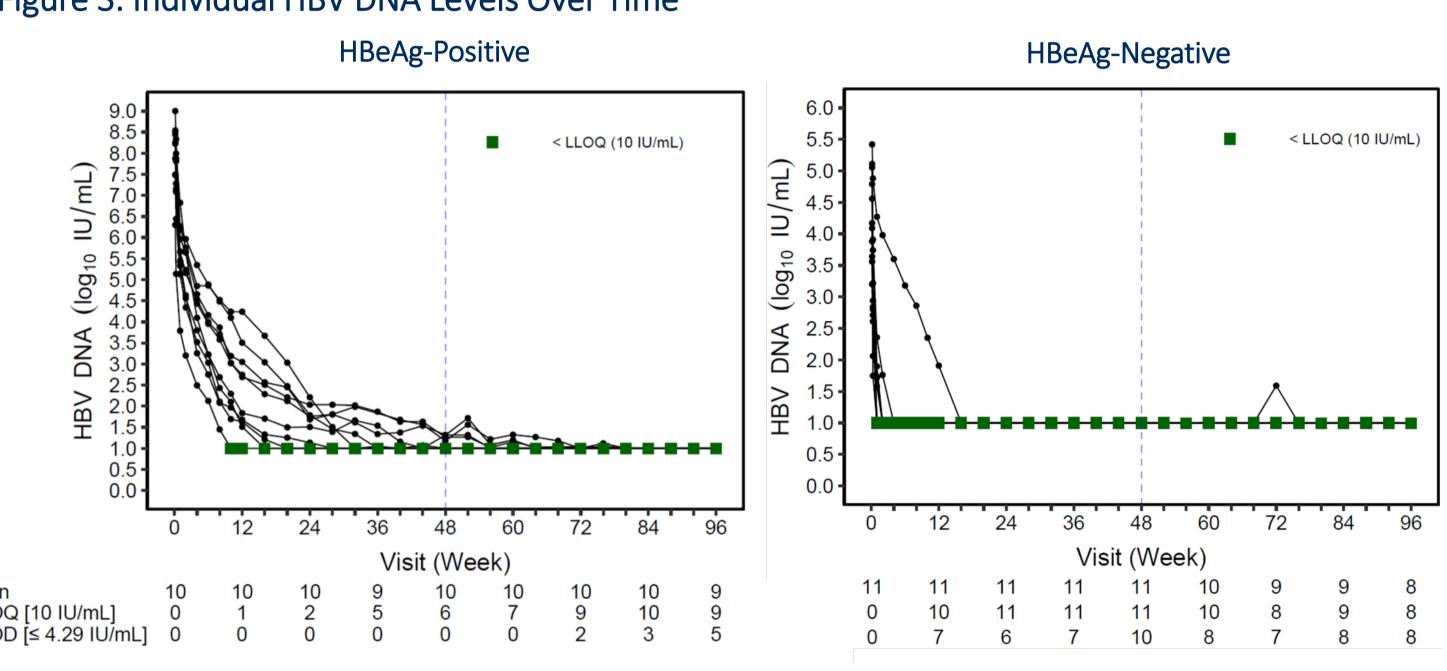

Grade 3 cholesterol/triglycerides increase in HBeAg-negative subject resolved in the setting of continued ALG-000184 dosing.

ANTIVIRAL EFFECT

Table 3: Maximum Mean Change in HBV Markers from Baseline During Dosing with 300 mg ALG-000184

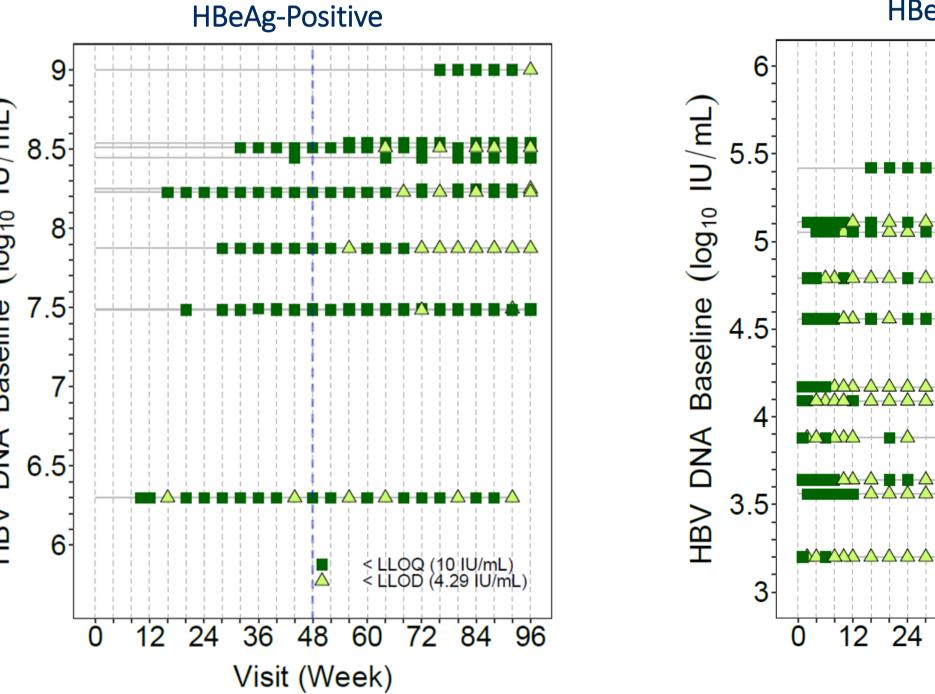
	HBeAg-positive	HBeAg-negative
HBV DNA (log ₁₀ IU/mL)	-7.2	-3.4
HBV RNA (log ₁₀ copies/mL)	-4.4	-1.0
HBsAg (log ₁₀ IU/mL)	-1.0	-0.0
HBeAg (log ₁₀ PEI U/mL)	-2.1	Not applicable
HBcrAg (log ₁₀ U/mL)	-2.2	-0.4

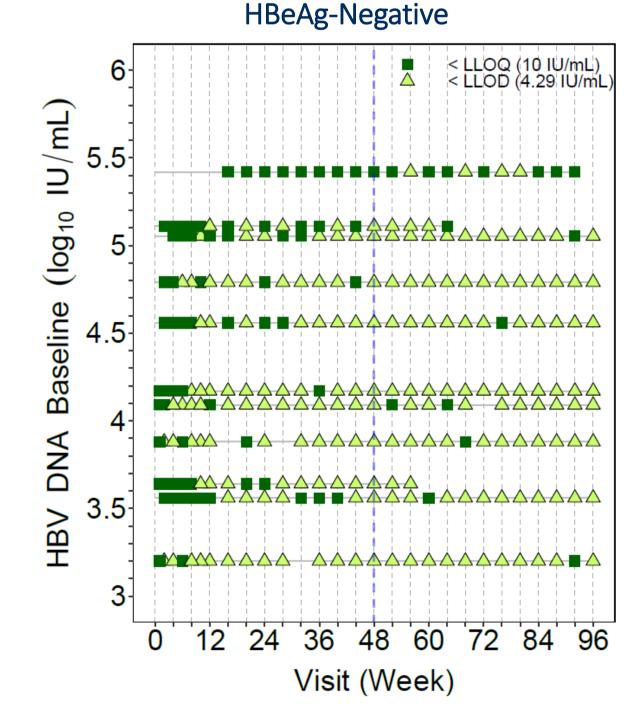
Figure 2. Preliminary Mean (SEM) serum HBV DNA change from baseline



300 mg ALG-184 monotherapy in HBeAg + 300 mg ALG-184 monotherapy in HBeAg -

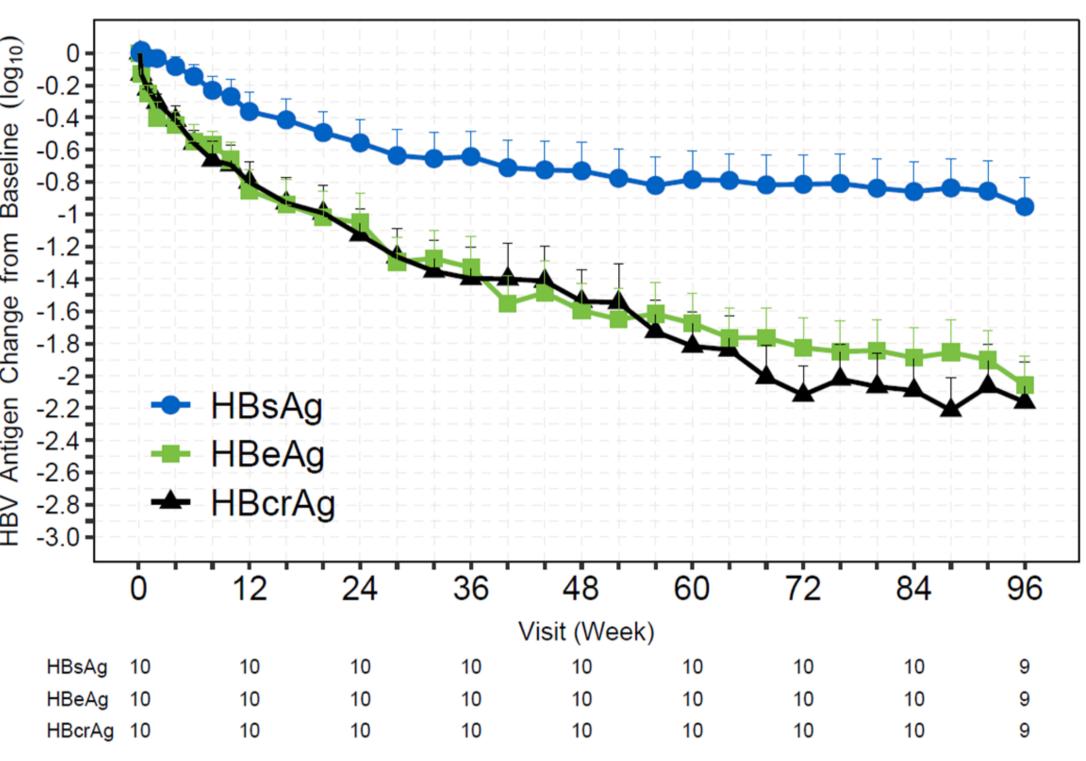
HBV DNA and RNA LEVEL

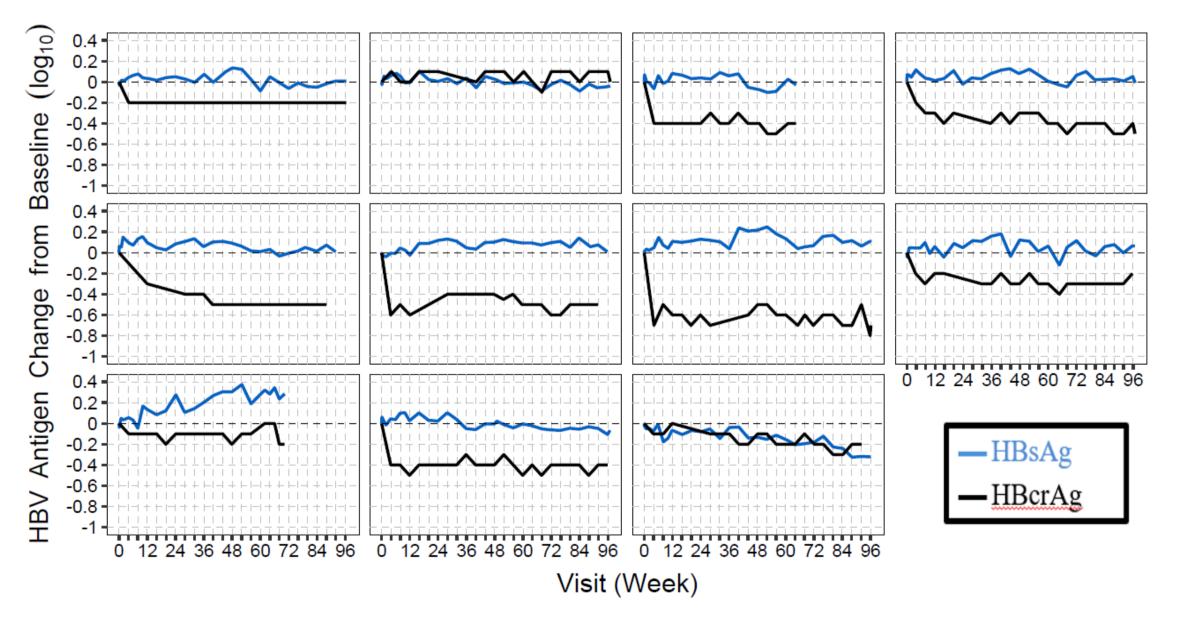

- 300 mg ALG-000184 monotherapy demonstrated a profound reduction in HBV DNA in TN/CNT subjects with chronic HBV infection (Table 3, Fig.2). The time to achieve HBV DNA < LLOQ (10 IU/mL) was dependent on the HBV DNA level at baseline (Fig.4).
- In HBeAg-positive subjects, 60% (6/10) and 100% (9/9) achieved HBV DNA < LLOQ (10 IU/mL) at Week 48 and 96, respectively. Furthermore, 56% (5/9) of subjects achieved HBV DNA < LLOD (at least <4.29 IU/mL) at Week 96 (Fig.4).
- In HBeAg-negative subjects, 100% (11/11) achieved HBV DNA < LLOQ and < LLOD by Week 20 and Week 96, respectively (Fig.4).
- HBV RNA < LLOQ (10 copies/mL) was achieved in all HBeAg-positive subjects by Week 52 and all HBeAg-negative subjects by Week 6.
- No virologic breakthrough was observed in any subjects receiving ALG-000184 monotherapy (Fig.3).


Figure 3. Individual HBV DNA Levels Over Time

Note: one HBeAg-negative subject had transient HBV DNA increase from < LLOQ to 39 IU/mL at Week 72. At the subsequent visit (Week 76) HBV DNA was < LLOQ (10 IU/mL)

Figure 4. Individual Time to HBV DNA < LLOQ and <LLOD




HBV ANTIGEN LEVEL

- Multiple-log reductions in HBsAg, HBeAg and HBcrAg were observed in TN/CNT HBeAg-positive subjects who received 300 mg ALG-000184 for ≤ 96 weeks (Table 3, Fig.5):
 - 70% of subjects (7/10) experienced an HBsAg decline ≥1 log₁₀ IU/mL, with a maximum reduction of 1.5 $\log_{10} IU/mL$.
 - 100% of subjects (10/10) experienced an HBeAg decline ≥1 log₁₀ PEI U/mL, with a maximum reduction of 2.9 log₁₀ PEI U/mL. 100% (10/10) subjects experienced an HBcrAg decline ≥1 log₁₀ U/mL, with a maximum reduction of $3.5 \log_{10} U/mL$.
- In TN/CNT HBeAg-negative subjects, 55% (6/11) experienced an HBcrAg reduction ≥0.5 log₁₀ U/mL with a maximum decline of 0.7 log₁₀ U/mL, while no significant decline in HBsAg level was observed (Table 3, Fig.6).

Figure 5. Mean (SEM) HBV Antigen Change in HBeAg-Positive Subjects

Figure 6. Mean (SEM) HBV Antigen Change in HBeAg-Negative Subjects

CONCLUSION

- 300 mg ALG-000184 monotherapy in TN/CNT HBeAg-positive and HBeAg-negative subjects for ≤ 96 weeks demonstrated:
 - a favorable safety profile
- profound HBV DNA suppression
- concomitant HBV antigen declines suggest cccDNA levels may be lowered as a result of CAM's 1st and 2nd MOAs
- ALG-000184 monotherapy has demonstrated promising potential to become the mainstay of a long-term suppression regimen for the regimen for chronic HBV infection.
- A Phase 2 clinical study to evaluate the superiority of ALG-000184 monotherapy in HBV DNA suppression compared to a nucleoside analogs (NA) is expected to begin in mid-2025.