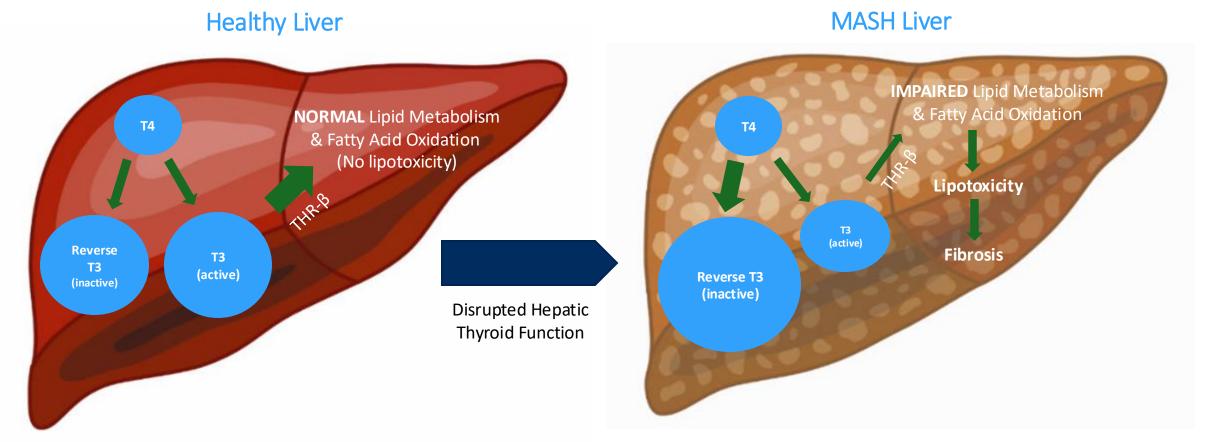


Rohit Loomba¹, Dimple Desai², Daniel Santillano³, Kathryn Jean Lucas⁴, Naim Alkhouri⁵, Guy Neff⁶, Antonio Bianco⁷, Eveline Bruinstroop⁸, Stanley Wang⁹, Kha Le⁹, Megan Fitzgerald⁹, Min Wu⁹, Ifong Kan-Eng⁹, Genevieve Harrington⁹, Melissa San Nicolas⁹, Chris Burnett⁹, Jen Rito⁹, Doug Clark⁹, Naqvi Mohammed⁹, Meenakshi Venkatraman⁹, Tse-I Lin⁹, Sushmita Chanda⁹, Lawrence Blatt⁹, Christos S. Mantzoros¹⁰

¹University of California, San Diego, La Jolla, CA, USA; ²Pinnacle Clinical Research, Edinburg, TX, USA; ³Pinnacle Clinical Research, San Antonio, TX, USA; ⁴Lucas Research − Diabetes & Endocrinology Consultants, PC, Morehead, NC, USA; ⁵Arizona Liver Health, Tucson, AZ, USA; ⁶Covenant Metabolic Specialists, LLC., Sarasota, FL, USA; ⁷University of Texas Medical Branch, Galveston, TX, USA; ⁸Amsterdam University Medical Center, Amsterdam, NL; ⁹Aligos Therapeutics, Inc., South San Francisco, CA, USA; ¹⁰Harvard Medical School, Boston, MA, USA



Disclosures

I disclose the following financial relationship(s) with a commercial interest:

- Scientific advisor or consultant for: Eli Lilly & Co., 89bio, Aardvark, Aligos, Altimmune, Alnlyam/Regeneron, Amgen, Arrowhead, AstraZeneca, Bristol Myers Squibb, CohBar, Galmed, Gilead, Glympse Bio, Hightide, Inipharma, Intercept, Inventiva, Ionis, Janssen, Inc., Madrigal Pharmaceuticals, Merck, Metacrine, Inc., NGM Biopharmaceuticals, Novartis, Pfizer, Sagimet Biosciences, Terns Pharmaceuticals, Theratechnologies, Viking Therapeutics
- Share options: 89bio, Sagimet Biosciences
- Grant/Research Support: Arrowhead, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Galectin Therapeutics, Galmed, Gilead, Hanmi, Intercept, Inventiva, Ionis, Janssen Inc., Madrigal Pharmaceuticals, Merck, NGM Biopharmaceuticals, Novo Nordisk, Pfizer, Sonic Incytes, Terns Pharmaceuticals
- Co-founder: LipoNexus, Inc.

Role of Hepatic Thyroid Dysfunction in MASLD/MASH Pathogenesis

Hatziagelaki et al. Trends in Endocrinology & Metabolism. 2022; 33(11). Liver figures adapted from $\frac{https://www.gblhospital.com/centre-for-excellence/gi-liver-surgeries/advance-liver-institute/fatty-liver/Striiodothyronine; T4=thyroxine; THR-<math>\beta$ =thyroid hormone receptor beta.

Reduced active T3 production in MASLD/MASH allows increased production of proinflammatory lipotoxic fat that causes hepatocellular injury/death, fibrosis, and cancer

ALG-055009 is a Highly Potent and Selective THR-β Agonist

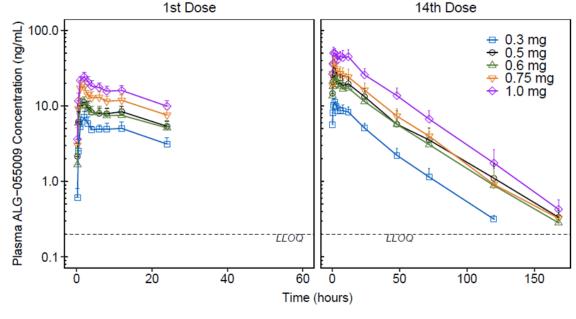
- Thyroid hormone receptor-beta (THR- β) is the primary THR expressed in the liver and plays an important role in lipid metabolism.^{1,2}
- THR-β agonists reduce atherogenic lipids, decrease hepatic fat, and improve liver histology in MASH.³

	EC ₅₀ α (nM)	EC ₅₀ β (nM)	Relative THR- β Selectivity (α/β)
ALG-055009	191	50	3.8
Resmetirom	5927	2366	2.5
VK-2809 Parent	297	269	1.1

^{1.} Sinha RA et al. Nat Rev Endocrinol. 2018; 14 (5): 259-269.

^{2.} Pramfalk C. et al. Biochim & Biophys Acta 2011; 1812: 929-937.

^{3.} Harrison S. et al. EASL 2023. Abstract #GS-001.


^{4.} Luong XG et al. PLoS One. 2020; 15(12).

^{5.} Vandyck K et al. Journal of Medicinal Chemistry. 2024; 67(17): 14840.

ALG-055009 was Well Tolerated in Phase 1, with Favorable Pharmacokinetics and Pharmacodynamics

- In Phase 1, single (up to 4.0 mg) and multiple (up to 1.0 mg QD for 14 days) doses of ALG-055009¹:
 - Were well-tolerated
 - Had dose proportional PK and low variability
 - Demonstrated expected thyromimetic effects, including dose-dependent increases in sex hormone binding globulin (SHBG) and reductions in lipid/lipoproteins

1. Charfi H. et al. AASLD 2023 Abstract #41459.

ALG-055009 Multiple Dose PK

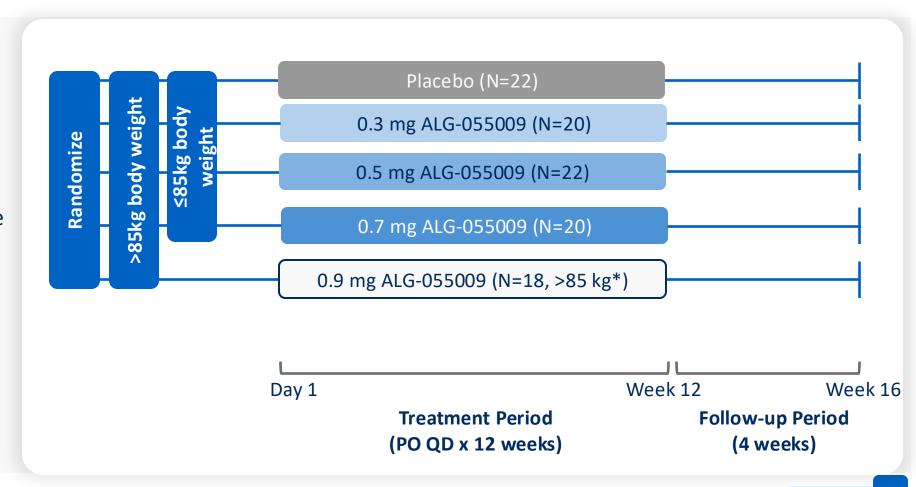
Data presented as mean ± SD

Phase 2a HERALD

Aim of this Phase 2a study was to examine the safety, tolerability, pharmacokinetics, and pharmacodynamics of oral daily doses of ALG-055009 vs placebo over 12 weeks of treatment in adult patients with presumed MASH and F1-F3 fibrosis.

ALG-055009

Phase 2a HERALD Study Design: Randomized, Double-Blind, Placebo-Controlled


Key Entry Criteria:

- 18-75 years old
- BMI ≥25 kg/m²
- Presumed MASH
- Non-cirrhotic (F1-F3)
- MRI-PDFF ≥10%
- GLP-1 agonist use must be stable (≥12 wks before dosing)

Primary endpoint: Percent relative change in liver fat content by MRI-PDFF at Week 12

Key secondary endpoints:

Safety/tolerability, lipid and lipoproteins, SHBG

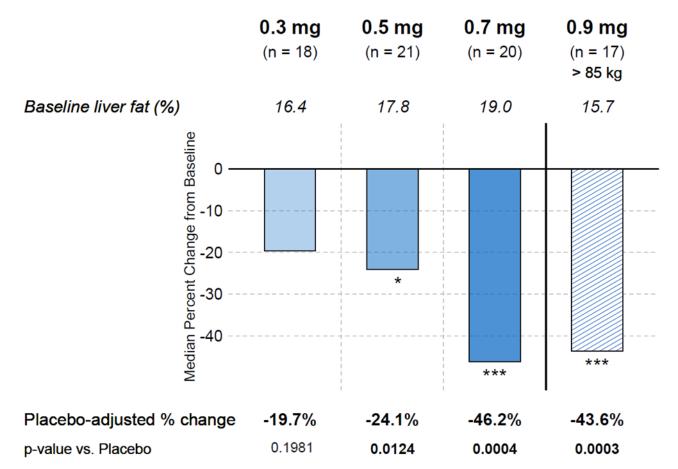
NCT06342947.

*Only subjects weighing >85 kg were enrolled in the 0.9 mg dose group, no body weight restrictions were implemented in other dose groups

HERALD: Baseline Characteristics Generally Balanced Across Arms

Consistent with Today's At-Risk MASH Population

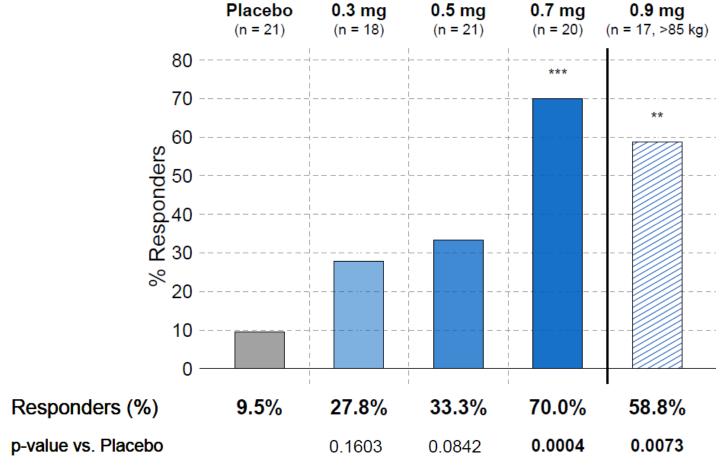
	Placebo (N=22)	ALG-055009				
		0.3 mg (N=20)	0.5 mg (N=22)	0.7 mg (N=20)	0.9 mg* (N=18, >85 kg)	
Age, mean (years)	48.5	53.3	49.5	51.4	48.1	
Female, n (%)	21 (95.5)	12 (60.0)	8 (36.4)	14 (70.0)	8 (44.4)	
Hispanic, n (%)	13 (59.1)	9 (45.0)	8 (36.4)	8 (40.0)	9 (50.0)	
BMI, mean (kg/m²)	42.1	37.8	39.0	37.4	40.2	
Weight, mean (kg)	109.1	107.0	115.2	106.4	116.5*	
MRI-PDFF, mean (%)	18.6	18.2	17.9	19.4	19.0	
Type 2 Diabetes, n (%)	11 (50.0)	9 (45.0)	10 (45.5)	10 (50.0)	7 (38.9)	
GLP-1 Agonists, n (%) [^]	4 (18.2)	3 (15.0)	5 (22.7)	5 (25.0)	1 (5.6)	
Statins, n (%)	4 (18.2)	11 (55.0)	7 (31.8)	8 (40.0)	6 (33.3)	
ALT, mean (U/L)	39.5	39.9	51.3	38.3	38.5	


BMI = body mass index; ALT = alanine a minotransferase; GLP-1 = glucagon-like peptide-1; BW = body weight.

^stable use (67% subjects for >1 year)

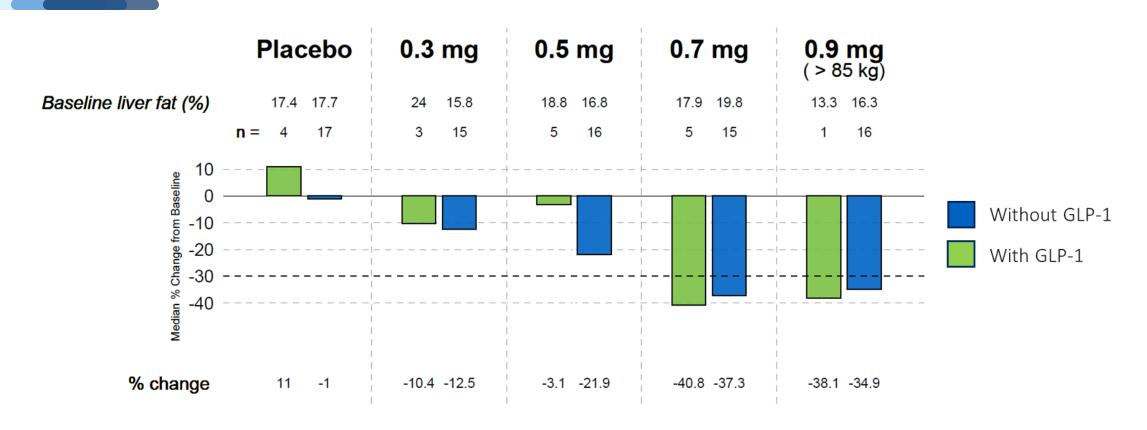
*Only subjects weighing >85 kg were enrolled in the 0.9 mg dose group, no body weight restrictions were implemented in other dose groups

HERALD: Primary Endpoint Achieved


Placebo-Adjusted Median Relative Change in Liver Fat at Week 12

Note: Data from MRI-PDFF analysis dataset, defined as all randomized subjects who have MRI-PDFF measurements available at both baseline and Week 12; median % change in placebo was +7.2%; *p<0.05 ***p<0.001.

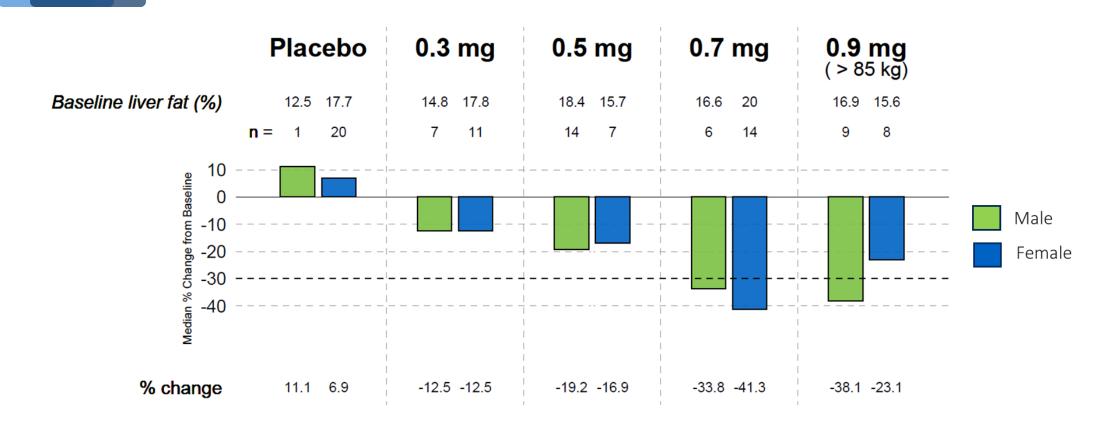
HERALD: Significant MRI-PDFF Response Rates at Week 12


Up to 70% of Patients Achieved ≥30% Relative Reduction in Liver Fat

^{1.} Loomba et al. Hepatology (2021). **p<0.01 ***p<0.001.

Additional Fat Reduction in Subjects with Stable Use of GLP-1 Agonists

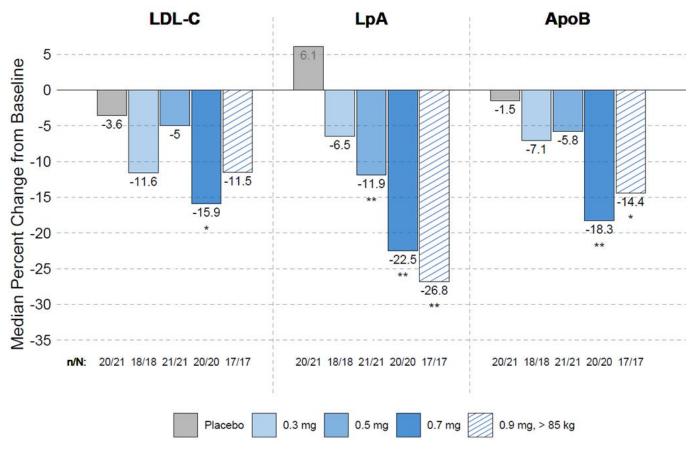
Median Relative Percent Change in Liver Fat at Week 12



Note: Subjects on GLP-1 agonists (semaglutide (n=12), liraglutide (n=4) or dulaglutide(n=2)) at baseline were required to have stable use for ≥12 weeks prior to randomization; for derivation of duration of use, if a month and/or day for the start of GLP-1 agonist use was unknown, it was imputed as January and/or the 1st of the month, respectively. Bolded dashed line indicates 30% relative reduction in liver fat.

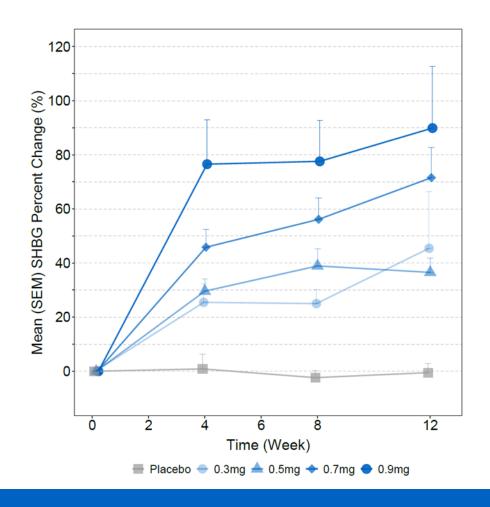
11/14 subjects on stable GLP-1 treated with ALG-055009 had liver fat decreases, whereas 4/4 subjects on stable GLP-1 treated with placebo had liver fat increases

No Apparent Impact of Gender on Liver Fat Reduction with ALG-055009


Median Relative Percent Change in Liver Fat at Week 12

Note: Bolded dashed line indicates 30% relative reduction in liver fat.

ALG-055009 Demonstrated Improvements in Lipid/Lipoproteins


Median Percent Change from Baseline at Week 12

LDL-C = low density lipoprotein cholesterol; LpA = lipoprotein (a); ApoB = apolipoprotein B; n: number of subjects with available data at week 12; N: number of subjects in MRI-PDFF analysis set; *p<0.05 **p<0.01.

HERALD: Dose-dependent Increases in Sex Hormone Binding Globulin

Up to ~90% Increase from Baseline in Sex Hormone Binding Globulin (SHBG)

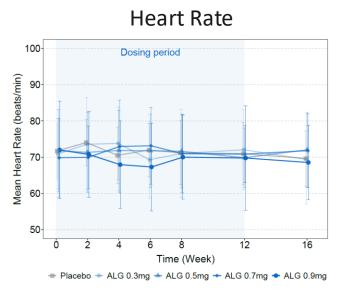
SHBG is a marker of THR-β target engagement in the liver Significant (p<0.0001) increases compared to placebo observed

HERALD: Favorable Safety and Tolerability Profile

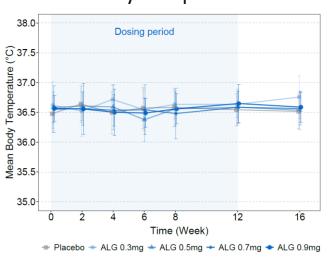
Rates of GI-related TEAEs Similar to Placebo

- No SAEs in subjects receiving ALG-055009
 - One unrelated SAE (hemangioma of bone) in a subject receiving placebo
- One discontinuation due to a treatment emergent adverse event (TEAE) of worsening insomnia in a subject with pre-existing insomnia
- Majority of TEAEs (97%) mild or moderate with no clinical hypo/hyperthyroidism
- Similar rates of diarrhea noted for active dose groups compared to placebo, with no dose-response
- No clinically concerning laboratory, ECG, physical exam or vital sign trends/findings

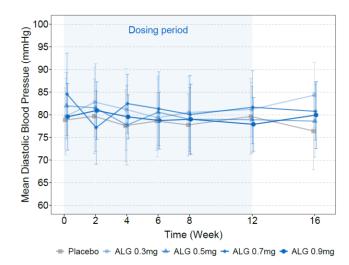
HERALD: Favorable Safety and Tolerability Profile

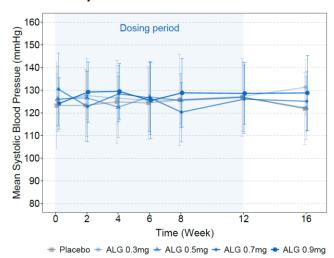

Rates of GI-related TEAEs Similar to Placebo

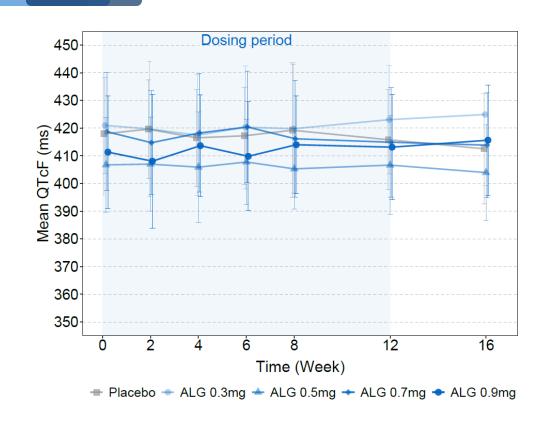
	Dlacaba	ALG-055009			
n, (%)	Placebo (N=22)	0.3mg (N=20)	0.5mg (N=22)	0.7mg (N=20)	0.9mg (N=18)
Any TEAE	17 (77.3)	14 (70.0)	11 (50.0)	14 (70.0)	11 (61.1)
TEAE Leading to Study Drug Discontinuation	0	0	1ª (4.5)	0	0
Serious AE	1 ^b (4.5)	0	0	0	0
Grade 3 or higher TEAE	1 ^b (4.5)	1° (5.0)	0	0	0
Gastrointestinal TEAEs	5 (22.7)	4 (20.0)	2 (9.1)	7 (35.0)	5 (27.8)
Diarrhea	5 (22.7)	1 (5.0)	0 (0.0)	2 (10.0)	2 (11.1)
Constipation	0 (0.0)	2 (10.0)	0 (0.0)	3 (15.0)	0 (0.0)
Nausea	1 (4.5)	2 (10.0)	0 (0.0)	0 (0.0)	1 (5.6)
Vomiting	1 (4.5)	1 (5.0)	1 (4.5)	0 (0.0)	0 (0.0)

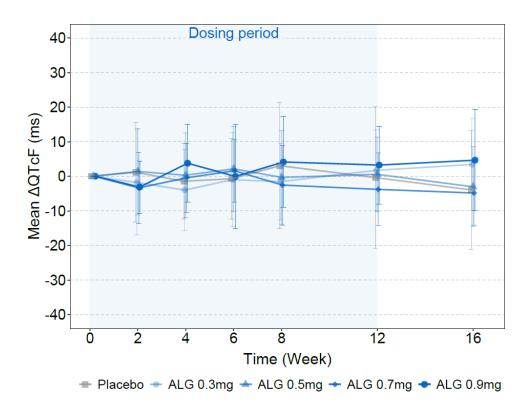

TEAE = treatment emergent adverse event

a. Grade 2 worsening insomnia in a subject with pre-existing insomnia; b. Grade 3 hemangioma of bone; c. Grade 3 anemia assessed by the Investigator as not related to study drug in a subject with heavy menstrual bleeding and a history of polycystic ovary syndrome and heavy menstrual periods.


HERALD: No Treatment Emergent Changes in Vital Signs Observed


Body Temperature


Diastolic Blood Pressure



Systolic Blood Pressure

HERALD: ALG-055009 has no Apparent Effect on QTcF Intervals

HERALD Phase 2a Study

Conclusions

- Primary endpoint achieved, with robust reductions in liver fat content at Week 12
 - Up to 46% placebo-adjusted median relative reductions
 - Up to 70% of patients with ≥30% decrease in liver fat
 - 11/14 subjects on stable GLP-1 treated with ALG-055009 had liver fat decreases, whereas 4/4 subjects on stable
 GLP-1 treated with placebo had liver fat increases
- Significant reductions in atherogenic lipids, including LDL-C, lipoprotein (a) and apolipoprotein B
- Dose-dependent increases in SHBG (marker of THR-β activation)
- Well-tolerated, with rates of GI-related AEs similar to placebo
 - No SAEs in subjects who received ALG-055009 and 1 study drug discontinuation (1/102 or 1% of patients)
 - Majority of TEAEs (97%) mild or moderate
 - No increased rates of diarrhea noted for active dose groups compared to placebo, with no dose response
- This data supports evaluation of longer durations of ALG-055009 (e.g., 48-52 weeks) and its effect on liver histology in Phase 2b

Acknowledgements

We wish to thank the patients, and the investigators and their support staff who participated in this study.

We would like to give a special thanks to Dr. Stephen Harrison who played a pivotal role in the design of the HERALD study

