

Discovery and Optimization of the Pre-Clinical Efficacy of Human PNPLA3-Targeting Short Interfering RNA Molecules (siRNAs) for the Treatment of Metabolic

Dysfunction-Associated Steatohepatitis

Vivek K. Rajwanshi¹, Saul Martinez Montero¹, Xuan Luong¹, Jieun Song¹, Jerome Deval¹, Lillian Adame¹, Ruchika Jaisinghani¹, Emily Tso², Daniel Lin², Aneerban Bhattacharya¹, Antitsa D. Stoycheva¹, Jacquelyn Sousa Craig Parish², Shane Daguison¹, Vikrant Gohil¹, Qingling Zhang¹, Toni Williamson², Sushmita Chanda¹, Dinah Misner¹, Saswata Talukdar², David B. Smith¹, Julian A. Symons¹, Leonid Beigelman¹, Yingjiang Zhou²

Poster Number: P 225

¹Aligos Therapeutics, Inc., South San Francisco, CA, United States; ²Merck & Co., Inc., Rahway, NJ, United States. Contact :vrajwanshi@aligos.com

Introduction

- Patatin-like phospholipase domain-containing protein 3 (PNPLA3), specifically the single nucleotide polymorphism rs738409[G] (I148M) variant, is a strong genetic risk factor for the development and progression of metabolic dysfunctionassociated steatotic liver disease (MASLD)¹.
- Recently, resmetirom, a small molecule THR β agonist, has-been approved for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). Additional treatment options, including siRNAs are of interest.
- Both ASO and siRNA approaches have been rapidly advancing in recent years to develop more effective and targeted alternatives for the treatment of MASH².
- The aim of our studies was to characterize short interfering RNA (siRNA) molecules that effectively silence the expression of PNPLA3 and could be used as potential therapies for MASLD/MASH.
- Aligos strategy: Target *PNPLA3* gene using siRNA with our proprietary designs.

Current Status of Aligos Proprietay siRNAs

ALG siRNA 1: Inhibition of Human PNPLA3 in DIO Mice

Study Design:

- Human PNPLA3(I148M)-KI; male; GAN diet-fed
- Dosing regimen: 5.0 mg/kg, Q2W, S.C.
- Measurements: BW weekly; blood chemistry [week 4, week 8, week 12 (terminal)] • **Endpoints:** PD (KD efficiency); Histology (MASH & Fibrosis)

ALG siRNA2: Conserved Activity Against Primate Targets

THERAPEUTIC

Primary cells (PHH; primary human hepatocytes, PCH; primary cyno hepatocytes, PRH; primary rhesus hepatocytes) were seeded in collagen coated multiwell plates. Twenty-four hours after seeding, cells were transfected with PBS (mock control)/1 or 10 nM siRNAs for 48 hr. The cells were harvested 48 hr after transfection for RNA extraction followed by RT-qPCR to test target expression.

sIPNPLA3	Target region	Goal for Improvement	Aligos Novel Chemistry	Status
ALG siRNA 1	#1 - Target bp	Improve potency	2'F/ 2'-OMe stabilization pattern	Ready for NHP DRF study
ALG siRNA 2	#2 - Target bp	Improve selectivity	<u>Novel seed</u> <u>de-stablization</u> <u>chemistry</u>	Late stage pre-clinical studies

- Mice were fed GAN diet for 12 weeks and then dosed with siRNAs for 12 weeks at 5 mg/kg, Q2W, S.C.
- ALG siRNA 1 demonstrated robust RNA and protein knockdown of the human target in hPNPLA3 KI mice.
- Seed destabilization with secoU @ position 7 on AS strand leads to a comparable potency as competitor control; unU @ position 6 has reduced potency at low dose
- Lead sequence @ position #2: potent in vitro activity on endogenous human target in PHH and favorable in vivo PK/PD properties (KI mouse)
- Lead sequence @ position #2: conserved in vitro activity on endogenous cyno and rhesus targets in primary monkey hepatocytes

ALG siRNA 1: Inhibition of Human PNPLA3 In Vitro SS ALG siRNA 1

"Hit-to-Lead" selection using primary in vitro screens

Synthesis of 3',4'-Seco Monomers

- ALG siRNAs show similar/better in vitro activity than competitor #1.
- *PNPLA3* EC₅₀ of ALG siRNA 1 = 0.008 nM, approximately 3-fold more potent than control #1.
- No significant cytotoxicity in Cos-7 or Huh-7 cells at the concentrations tested.
- Using the DIO hPNPLA3 KI mouse model, treatment with ALG siRNA 1 resulted in the greatest reductions/improvements in MASH histological endpoints (NAS score), fibrosis (PSR % area), and necrosis/apoptosis.
- In parallel, ALG siRNA 1 showed significant reductions in liver enzyme levels.

- A hPNPLA3 I148M KI mouse model was used to assess the PK/PD and durability of ALG siRNA 1 target knockdown
- ALG siRNA 1 has favorable *in vivo* PK/PD properties comparable/better than competitor controls in the hPNPLA3 KI mouse model
- ALG siRNA 1 retained activity 56 days post-dose after a single dose

Conclusions

- We discovered several siRNA molecules that effectively silence human PNPLA3 gene expression in vitro and in vivo.
- Repeat dosing of ALG siRNA 1 in a DIO mouse model ultimately led to the improvement of MASH endpoints.
- Optimized siRNA ALG-2d demonstrated robust, dose-dependent knockdown of the human RNA target in PK/PD studies using human PNPLA3 KI mice.
- Novel Seco seed destabilization chemistry led to improved off target profile
- Further common genes, gene ontology, and pathway analysis ongoing
- No cytotoxicity was observed for all tested siRNA up to the highest tested concentration of 1000 pM.
- The data generated in these studies allowed for the

progression of select ALG siRNAs into late-stage preclinical studies.

References

1. Liver International. 2023;43:975–988

2. Journal of Hepatology, October 2023. vol. 79 j 1056–1064

Financial disclosures

All authors are directly employed by Aligos Therapeutics, Inc. or Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA

