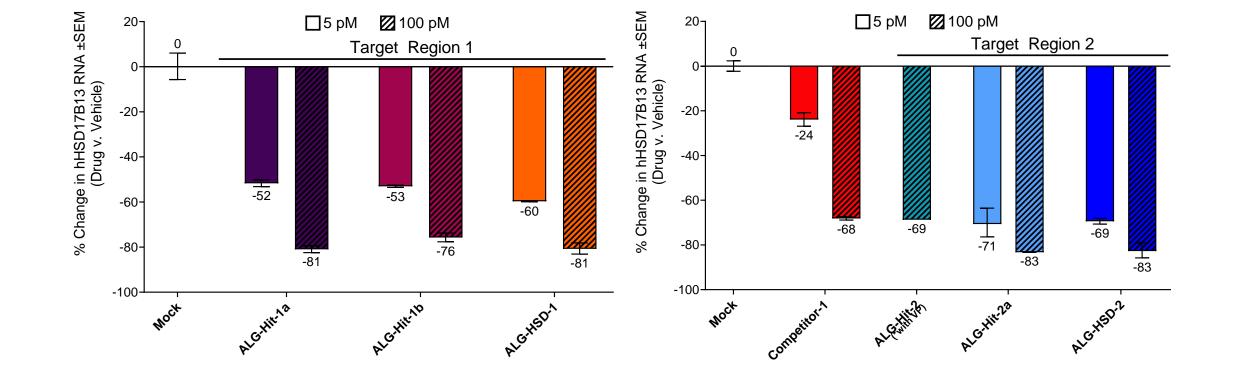


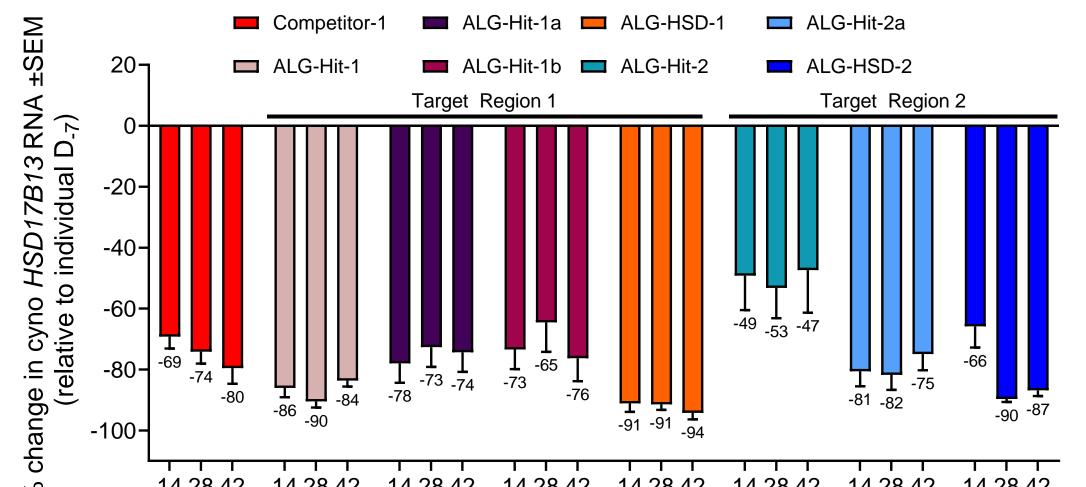
Two Pre-clinical Short Interfering RNA (siRNA) Molecules Targeting Human HSD17 β 13 for the Treatment of Metabolic Dysfunction-Associated Steatohepatitis ALIGOS

Vivek K. Rajwanshi¹, Kellan Passow¹, Xuan Luong¹, Ji Eun Song¹, Lillian Adame¹, Peter Althoff¹, Sarah Stevens¹, Saul Martinez Montero¹, Christopher Novotny², Jerome Deval¹, Ruchika Jaisinghani¹, Erin Coyne², Aneerban Bhattacharya¹, Antitsa D. Stoycheva¹, Tilani De Costa¹, Seetha Krishnamoorthy¹, Dana Cho¹, John Cortez¹, Jacquelyn Sousa¹, Craig Parish², Sal Jabri², Shane Daguison¹, Vikrant Gohil¹, Qingling Zhang¹, Toni Williamson², Sushmita Chanda¹, Dinah Misner¹, Saswata Talukdar², David B. Smith¹, Julian A. Symons¹, Leonid Beigelman¹

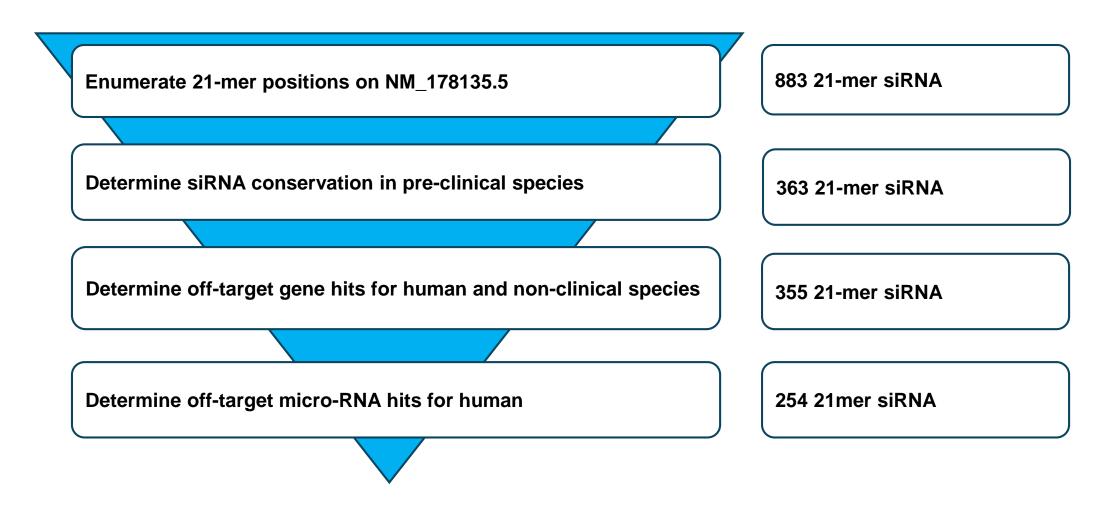

THERAPEUTICS

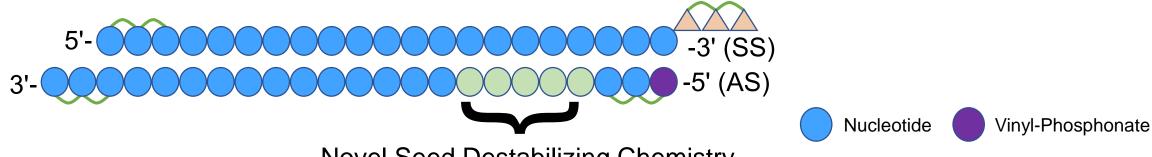
Contact: vrajwanshi@aligos.com and kpassow@aligos.com ¹Aligos Therapeutics, Inc., South San Francisco, CA, United States; ²Merck & Co., Inc., Rahway, NJ, United States

Introduction


- Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is believed to affect approximately 250 million people (~30% of the world population)¹
- Metabolic Dysfunction Associated Steatohepatitis (MASH) is a severe form of MASLD that is a leading cause for liver transplantation¹
- First MASH treatment approved in 2024 (small molecule)²
- Previously, standard of care for MASH depended on lifestyle changes (diet, exercise, symptom treatment)
- Genome-Wide Association Study (GWAS) found loss-of-function splice variants in $HSD17\beta13$ were strongly correlated with lower risk of liver diseases and inflammation (ALT/AST)³
- $HSD17\beta13$ mRNA reduction correlates positively with improvement in nonalcoholic fatty liver disease activity score (NAS)³
- Multiple $HSD17\beta13$ -targeting oligonucleotide therapeutics have undergone clinical evaluation (Phase $1-2)^4$

• RT-qPCR in primary human hepatocytes (PHH) used to screen siRNA (5 pM or 100 pM dose)


ALG-HSD-1 and ALG-HSD-2 Strongly Reduced HSD17B13 RNA and Protein in a Non-Human Primate Model and Showed **Enhanced Stability**


Objectives

- Identify new target regions and chemistries with improved in vitro and in vivo potency and maintain clean safety profiles
- Generate data to support progression of select ALG siRNAs into late-stage preclinical studies

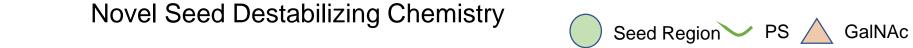
In Silico Screening Operation and Hit Optimization Utilized **Different Chemical Strategies**

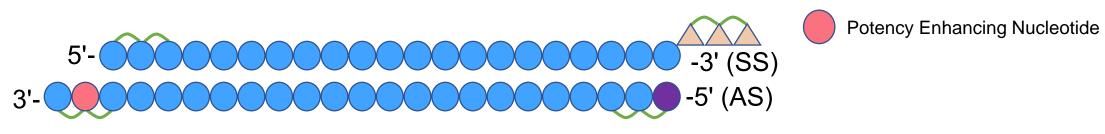
Hit:	Target Region	Liability	Chemistry Optimization	Final Leads
ALG-Hit-1	1	Selectivity	Novel Chemistry Position 7	ALG-HSD-1
ALG-Hit-2	2	Potency	Stabilizing 2'-OMe/F Pattern	ALG-HSD-2

- Target Region 1 hits all near-equipotent at both doses; Head-to-head comparison found **ALG-HSD-1** outperformed Competitor-1 at both 5 and 100 pM in a separate study
- Target Region 2 ALG-Hit-2a and ALG-HSD-2 achieved potency parity with Competitor-1 at a lower dose

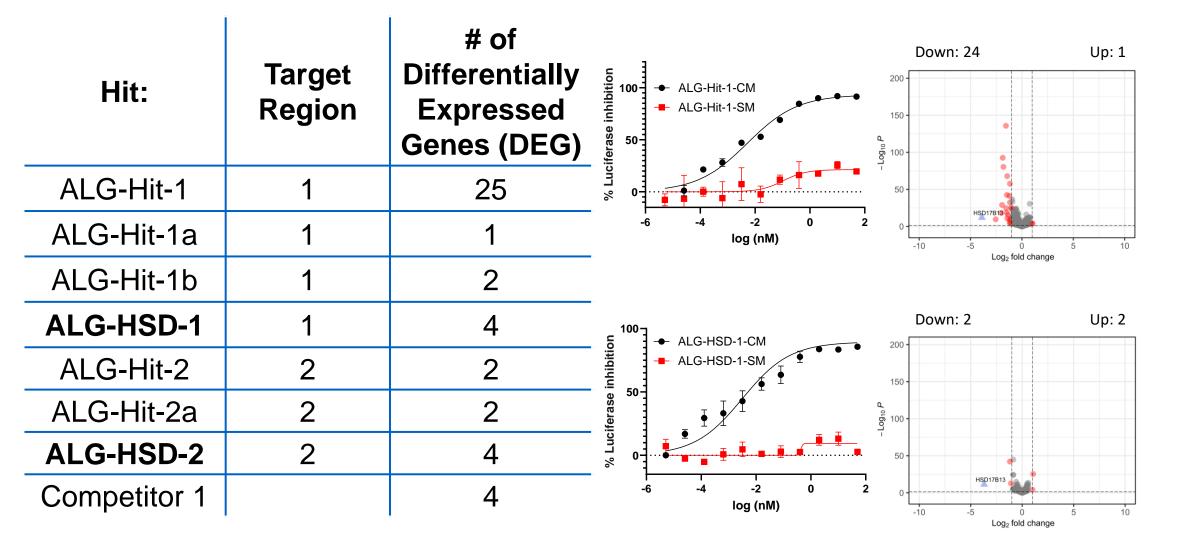
ALG Hits Surpass Competitor in AAV Mouse Model

Dose	RNA Knockdown (%) h <i>HSD17β13</i>								
	Study of Target Region 1					Study of Target Region 2			
	Compe- titor-1	ALG- Hit-1	ALG- Hit-1a	ALG- Hit-1b	ALG- HSD-1	Compe- titor-1	ALG- Hit-2a	ALG- HSD-2	
1.5 mg/kg	-33%	-76%	-50%	-29%	-56%	-53%	-63%	-76%	
5 mg/kg	-57%	-86%	-79%	-79%	-89%	-85%	-87%	-91%	

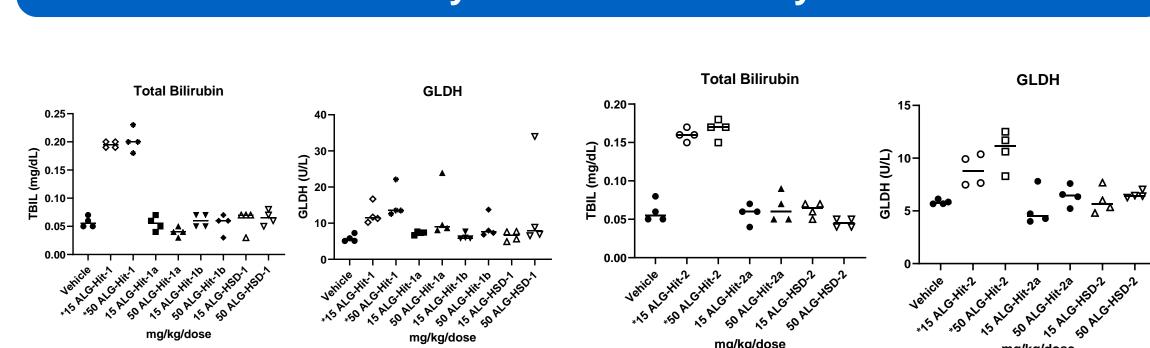

- AAV-HSD Mouse Model: 4 animals per dose range (1.5 or 5 mg/kg and a no-drug vehicle)
- Day 0 infection, Day 7 SC injection of siRNA, Day 21 collect liver and plasma for analysis
- Differential hHSD17 β 13 expression generated by RT-qPCR
 - Enhancements of 10+% in RNA KD over Competitor-1 observed
- Differential expression of hHSD17β13 protein generated by western blot WB data correlates well with RNA KD

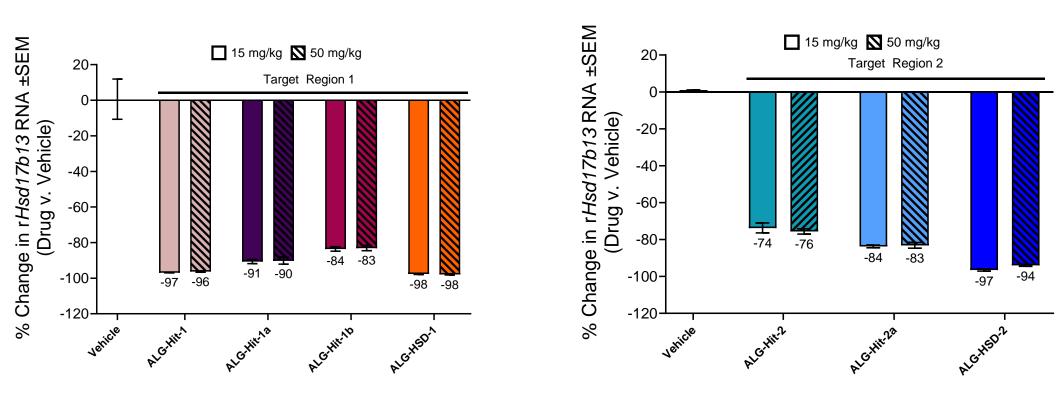

Optimized Chemistry Contributed to Reduced Safety Liabilities and Robustly Enhanced Potency in Rats

- 14 28 42 14 28 42 14 28 42 14 28 42 14 28 42 14 28 42 14 28 42 14 28 42 14 28 42 % Day of Study
- Male Cyno Monkey Model: 4 animals per group dosed with a single siRNA at 3 mg/kg or no-drug vehicle
- Plasma sampled over 48 hours after dosing; liver biopsy samples collected on days 14 and 42; clinical pathology samples collected at days -7, 1, 2, 14, 28, and 42 days
- Target region 1 siRNA show strong RNA knockdown; ALG-Hit-1 and ALG-HSD-1 are the most potent in the series
- Target region 2 siRNA show dramatic efficacy enhancement with chemistry modifications; ALG-Hit-2a and ALG-HSD-2 superior to ALG-Hit-2 parent


	ALG-Hit-1	la ALC	ALG-Hit-1b		ALG-HSD-1		ALG-Hit-2a		ALG-HSD-2	
	d -7	d 28 d -7	d 28	d -7	d 28	d -7	d 28	d -7	d 28	
	C1001 C1002 C1003 C1004 C1001	C1002 C1003 C1004 C2001 C2002 C2003	C2004 C2001 C2002 C2003 C2003	C1001 C1002 C1003 C1004	C1002 C1002 C1003 C1004	C1001 C1002 C1003 C1004	C1001 C1002 C1003 C1004	C2001 C2002 C2003 C2004	C2001 C2002 C2003	
80 kDa <mark>Calnexin</mark> 65 kDa -		======				====				
50 kDa [—] <mark>β -actin</mark> 40 kDa —									~	
HSD17B13 30 kDa -										
						% Change Cyno HSD17B13 Protein (d 28)				
						Con	npetitor	-1: -69	%	
	Competitor-1		lit-1	ALG-Hit-2		ALG-Hit-1: -91%				
	<u>d-7</u> d2	28 <u>d-7</u>	d 28	d -7	d 28	AL	G-Hit-1a	ı: -72%		
100 kDa Calnexin 70 kDa						AL	G-Hit-1k): -66%		
40 kDa —						AL	G-HSD-1	L: -87%	,	
ISD17B13 35 kDa						А	_G-Hit-2	: -59%		
						AL	G-Hit-2a	ı: -76%		
							G-HSD-2			

• Western blot (WB) of HSD17B13 on liver samples collected on day -7 and day 28





Hit siRNAs Displayed Varying Levels of Selectivity In Vitro

- Luciferase constructs used to differentiate efficacy and selectivity:
- SM construct has a region complementary to the siRNA AS only in the seed region
- CM construct has a region complementary to the whole siRNA AS
- Relative Luciferase activity indicates promiscuity of siRNA with limited sequence recognition
- Fold change for DEG (red circles) was > 2; approximately 16,000 genes analyzed
 - RNA-Seq found ALG-Hit-1 displayed promiscuous silencing

- Wistar-Han Rat Model: 4 animals per dose range (15 or 50 mg/kg and a no-drug vehicle)
- Day 1, 8, and 15 dose; terminal tissue and serum were collected for analysis on day 16
- ALG-HSD-1 and ALG-HSD-2 showed excellent potency (note: 2 MM in rat $HSD17\beta13$ gene)
- · Minimal to mild changes in body weight, albumin/globulin ratio, serum lipid concentrations, and liver enzymes were observed

- HSD17B13 levels calculated relative to loading control calnexin (and β -actin)
- Protein knockdown date correlates well with observed RNA knockdown, corroborating the potency observed by qPCR

	Relative Abundance to Full-Length Peak Area							
Observed Metabolism	ALG- Hit-1a	ALG- Hit-1b	ALG- HSD-1	ALG- Hit-2a	ALG- HSD-2			
(n-1 at 3') + Deamination	124%	190.4%	24.2%	-	-			
(n-1 at 3')	132%	115.5%	94.8%	64.8%	1.6%			
Deamination	69.8%	132.7%	17.3%	-	-			

- No significant clinical pathology changes were observed
- Differences in metabolic profile attributed to unique chemistry of each siRNA
- Target region 1 siRNA more prone to deamination and nuclease cleavage
- Target region 2 siRNA protected against nucleases with novel chemical modifications

Conclusion

- We report here data that support the progression of **ALG-HSD-1** and **ALG-HSD-2** into late-stage preclinical studies
- ALG-HSD-1 maintained the exquisite potency of parent ALG-Hit-1 while significantly reducing safety and selectivity liabilities
- **ALG-HSD-2** maintained the selectivity and safety of parent ALG-Hit-2 while greatly enhancing potency and metabolic stability

References 1. AASLD.org 2. https://clinicaltrials.gov/study/NCT03900429 3. N. Engl. J. Med. 2018, 378, 1096-1106 4. J. Hepatol. 2023, 78, 684-692; https://clinicaltrials.gov/study/NCT05519475

