Discovery of ALG-094103, a Liver-Targeted and Orally Bioavailable Small Molecule PD-L1 Inhibitor for the Treatment of Liver Cancer Heleen Roose¹, Kristina Rekstyte-Matiene¹, Sarah Stevens², Kusum Gupta², Sandra Chang², Cheng Liu², Vladimir Serebryany², Lillian Adame², Kha Le², Antitsa Stoycheva², Lawrence M. Blatt², Leonid Beigelman², Sushmita Chanda², David B. Smith², Julian A. Symons², Andreas Jekle², Tongfei Wu¹ ¹Aligos Belgium BV, Leuven, Belgium, ²Aligos Therapeutics, Inc., South San Francisco, CA Contact emails: hroose@aligos.com; twu@aligos.com; PD-1/PD-L1 antibody-based therapies have demonstrated success in the treatment of liver cancers. Most systemic immune-related adverse events (irAEs) associated with PD-1/PD-L1 antibodies are mild to moderate, but severe irAEs can be life threatening, due to the long half-lives of antibodies. Recently, PD-L1 small molecule inhibitors (SMi) have been developed, e.g., INCB086550 which demonstrated clinical response in a phase I study. Here, we report the discovery of an orally bioavailable PD-L1 small molecule inhibitor, ALG-094103, which preferentially partitions into the liver and may thereby mitigate extra-hepatic irAEs. ### Methods The biochemical interaction of PD-1/PD-L1 and PD-L1 dimerization was assessed by AlphaLISA®. Cellular activity was measured using a co-culture reporter assay in which TCRmediated NFAT activity of Jurkat T cells is constitutively inhibited by the engagement of PD-1 by PD-L1 expressing CHO cells. T cell viability was assessed in Jurkat T cells using Cell Titer Blue. Pharmacokinetic (PK) and tissue distribution studies were performed in C57BL/6 mice and PK in Wistar Han rats and Cynomolgus monkey. Percentage target engagement and cell surface PD-L1 reduction was calculated using median fluorescent intensity compared with an untreated control. In vivo PD-L1 target occupancy was assessed 6 hours following a single oral dose in a humanized-PD-L1 MC38 subcutaneous mouse model. ### **ALG-094103** is a Potent and Selective PD-L1 Small Molecule Inhibitor | | | Nivolumab
PD-1 antibody | Durvalumab
PD-L1 antibody | INCB086550
PD-L1 SMi | ALG-094103
PD-L1 SMi | |----------------------|--|----------------------------|------------------------------|-------------------------|-------------------------| | Biochemical | Human PD-1/PD-L1 Interaction IC ₅₀ (nM) | 0.159 (n=2) | 0.025 (n=2) | 0.043 (n=3) | 0.012 (n=3) | | Activity | Human PD-L1 Dimerization EC ₅₀ (nM) | No dimerization | No dimerization | 63 (n=3) | 143 (n=3) | | | Jurkat PD-1/PD-L1 Blockade | 2.4 | 0.4 | 11 | 11 | | | EC ₅₀ (nM) | (n=9) | (n=10) | (n=239) | (n=15) | | Cellular
Activity | Jurkat T cell viability
CC ₅₀ (nM) | >500 | >500 | 7166
(n=64) | 31438 (n=6) | | | Selectivity Index T cell CC ₅₀ /Blockade EC ₅₀ | | | 623 | 2715 | Table 1: Biochemical and cellular activities of ALG-094103 vs. FDA-approved PD-L1 antibodies and INCB086550 # **ALG-094103** Binds Cellular PD-L1 and Reduces Cell Surface PD-L1 Figure 1: Effect of ALG-094103 vs. FDA-approved PD-L1 antibodies on PD-L1 cell surface expression PD-L1-expressing CHO cells were incubated for 24 hours in presence of PD-L1 inhibitors. PD-L1 target engagement (A) and PD-L1 surface expression (B) were assessed by flow cytometry using competitive MIH1 and non-competitive 28.8 anti-PDL1 antibodies, respectively. # **ALG-094103 Exhibits Liver Targeted Tissue Distribution** # A. Mouse Plasma PK Parameters | | ALG-094103 | | |---------------------------------|------------|--| | PO Dose (mg/kg) | 50 | | | C _{max} (μM) | 21.1 | | | T _{max} (hour) | 0.50 | | | AUC _{0-12hr} (μM.hour) | 82.5 | | | | | | # B. Mouse Tissue Distribution at 12 hours of Post Dosing Figure 2: Mean plasma and tissue concentrations of ALG-094103 in C57BL/6 mice - A. Mouse PK parameters following a single oral dose of ALG-094103 - B. Mouse tissue distribution of ALG-094103 at 12 hours of post dosing of ALG-094103 # ALG-094103 Demonstrates In Vivo Target Engagement in a **Humanized PD-L1 MC38 Subcutaneous Tumor Model** Figure 3: In vivo PD-L1 target occupancy of ALG-094103 in humanized-PD-L1 MC38 subcutaneous tumor hu-PD-L1 MC38 cells were implanted subcutaneously, and mice were dosed with vehicle or indicated - compounds. A. Histogram of flow cytometry analysis of unoccupied h-PD-L1 on the cell surface - B. PD-L1 Target engagement of 50 mg/kg ALG-094103 was more efficacious than 150 mg/kg INCB086550 # **ALG-094103** Has a Favorable In Vitro ADME Tox Profile | A. ALG-094103 in vitro ADME pro | i-094103 in vitro ADME profile | | B. ALG-094103 in vitro Tox profile | | | |--|--------------------------------|---|------------------------------------|--|--| | Caco-2 Papp (10 ⁻⁶ cm/s)
A→B (ER) | 1.1 (18.5) | hERG/NaV/CaV IC ₅₀ (μM) | All > 10 | | | | Liver Microsomal Stability T _{1/2} (min) mouse/rat/dog/Monkey/human | All > 60 | In Vitro Micronucleus Screening in TK6 cells | Negative | | | | CYP Inhibition @ 10 μM
CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6,
3A4 | All < 20% | AMES Screening
TA98, TA100, TA1535, TA97a,
WP2 uvrA, pKM101 | Negative | | | | CYP3A4 PXR Activation
0.1 μM, 1.0 μM, 10 μM | No activation | CEREP Safety Functional Panel | All > 10 | | | | GSH Conjugation | No adduct | 78 targets E/IC ₅₀ (μM) | | | | | PPB (% bound) mouse/rat/dog/Monkey/human | 96.06 -98.30 | CEREP 58 Kinases at 10 μM | No significant inhibition | | | # Table 2: ALG-094103 in vitro ADME Tox profile - Low potential for CYP450-Mediated DDIs - Low potential for generating reactive metabolite - > Low potential for cardiovascular safety liability, gene tox liability and other safety related off target effects # **ALG-094103 Exhibits Favorable Pharmacokinetic Properties** | | Rat | | Monkey | | |---|------|------|--------|------| | | IV | РО | IV | РО | | Dose (mg/kg) | 2.0 | 15 | 1.0 | 10 | | C ₀ or C _{max} (μΜ) | 6.34 | 1.16 | 22.2 | 22.1 | | T _{max} (hour) | - | 3.00 | | 2.67 | | Cl_obs (mL/min/kg) | 23.1 | - | 3.27 | - | | Vss_obs (L/kg) | 1.82 | - | 0.63 | - | | t _{1/2} (hour) | 1.06 | 2.08 | 3.78 | 4.63 | | AUC _{0-inf} (μM·hour) | 2.33 | 6.97 | 9.26 | 106 | | Oral Bioavailability (F%) | | 40% | | 115% | # Table 3: ALG-094103 pharmacokinetic parameters in rats and monkeys ALG-094103 was formulated in 40% -60% PEG400 in water as a clear solution. PK was performed in male Wistar Han rat and cynomolgus monkey, fasted for IV. # Conclusion We have discovered ALG-094103 as a novel liver-targeted and orally bioavailable PD-L1 small molecule inhibitor. The properties of ALG-094103 will be further evaluated as a potential candidate for drug development.