

Discovery of ALG-094103, a Liver-Targeted and Orally Bioavailable Small Molecule PD-L1 Inhibitor for the Treatment of Liver Cancer

Heleen Roose¹, Kristina Rekstyte-Matiene¹, Sarah Stevens², Kusum Gupta², Sandra Chang², Cheng Liu², Vladimir Serebryany², Lillian Adame², Kha Le², Antitsa Stoycheva², Lawrence M. Blatt², Leonid Beigelman², Sushmita Chanda², David B. Smith², Julian A. Symons², Andreas Jekle², Tongfei Wu¹

¹Aligos Belgium BV, Leuven, Belgium, ²Aligos Therapeutics, Inc., South San Francisco, CA

Contact emails: hroose@aligos.com; twu@aligos.com;

PD-1/PD-L1 antibody-based therapies have demonstrated success in the treatment of liver cancers. Most systemic immune-related adverse events (irAEs) associated with PD-1/PD-L1 antibodies are mild to moderate, but severe irAEs can be life threatening, due to the long half-lives of antibodies. Recently, PD-L1 small molecule inhibitors (SMi) have been developed, e.g., INCB086550 which demonstrated clinical response in a phase I study. Here, we report the discovery of an orally bioavailable PD-L1 small molecule inhibitor, ALG-094103, which preferentially partitions into the liver and may thereby mitigate extra-hepatic irAEs.

Methods

The biochemical interaction of PD-1/PD-L1 and PD-L1 dimerization was assessed by AlphaLISA®. Cellular activity was measured using a co-culture reporter assay in which TCRmediated NFAT activity of Jurkat T cells is constitutively inhibited by the engagement of PD-1 by PD-L1 expressing CHO cells. T cell viability was assessed in Jurkat T cells using Cell Titer Blue. Pharmacokinetic (PK) and tissue distribution studies were performed in C57BL/6 mice and PK in Wistar Han rats and Cynomolgus monkey. Percentage target engagement and cell surface PD-L1 reduction was calculated using median fluorescent intensity compared with an untreated control. In vivo PD-L1 target occupancy was assessed 6 hours following a single oral dose in a humanized-PD-L1 MC38 subcutaneous mouse model.

ALG-094103 is a Potent and Selective PD-L1 Small Molecule Inhibitor

		Nivolumab PD-1 antibody	Durvalumab PD-L1 antibody	INCB086550 PD-L1 SMi	ALG-094103 PD-L1 SMi
Biochemical	Human PD-1/PD-L1 Interaction IC ₅₀ (nM)	0.159 (n=2)	0.025 (n=2)	0.043 (n=3)	0.012 (n=3)
Activity	Human PD-L1 Dimerization EC ₅₀ (nM)	No dimerization	No dimerization	63 (n=3)	143 (n=3)
	Jurkat PD-1/PD-L1 Blockade	2.4	0.4	11	11
	EC ₅₀ (nM)	(n=9)	(n=10)	(n=239)	(n=15)
Cellular Activity	Jurkat T cell viability CC ₅₀ (nM)	>500	>500	7166 (n=64)	31438 (n=6)
	Selectivity Index T cell CC ₅₀ /Blockade EC ₅₀			623	2715

Table 1: Biochemical and cellular activities of ALG-094103 vs. FDA-approved PD-L1 antibodies and INCB086550

ALG-094103 Binds Cellular PD-L1 and Reduces Cell Surface PD-L1

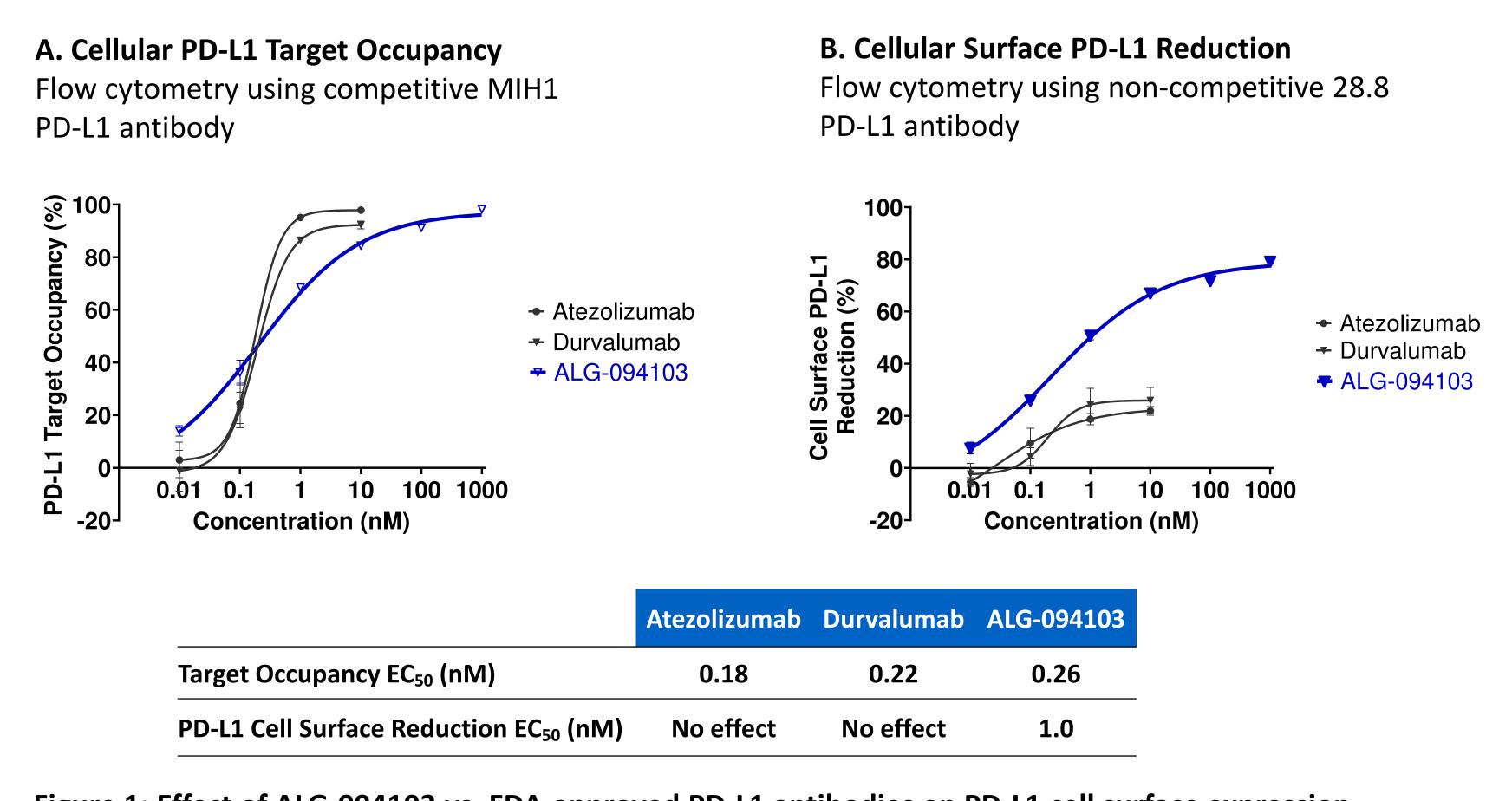


Figure 1: Effect of ALG-094103 vs. FDA-approved PD-L1 antibodies on PD-L1 cell surface expression PD-L1-expressing CHO cells were incubated for 24 hours in presence of PD-L1 inhibitors. PD-L1 target engagement (A) and PD-L1 surface expression (B) were assessed by flow cytometry using competitive MIH1 and non-competitive 28.8 anti-PDL1 antibodies, respectively.

ALG-094103 Exhibits Liver Targeted Tissue Distribution

A. Mouse Plasma PK Parameters

	ALG-094103	
PO Dose (mg/kg)	50	
C _{max} (μM)	21.1	
T _{max} (hour)	0.50	
AUC _{0-12hr} (μM.hour)	82.5	

B. Mouse Tissue Distribution at 12 hours of Post Dosing

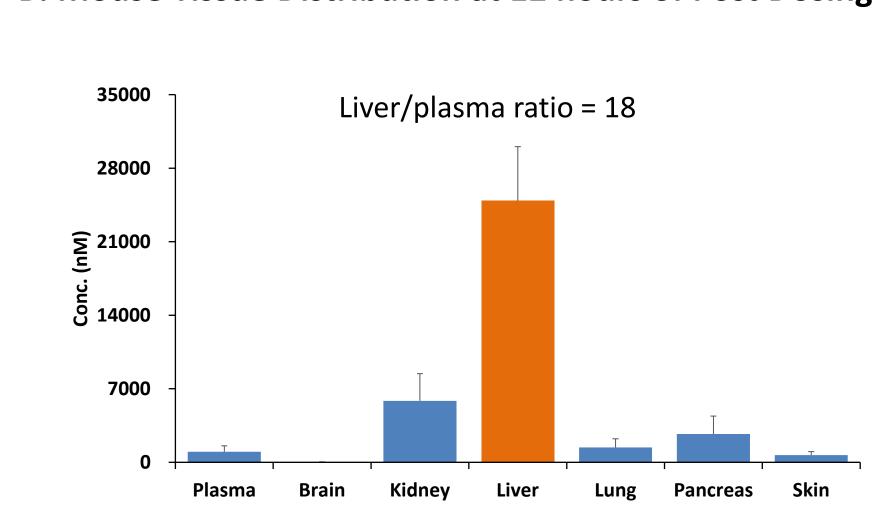


Figure 2: Mean plasma and tissue concentrations of ALG-094103 in C57BL/6 mice

- A. Mouse PK parameters following a single oral dose of ALG-094103
- B. Mouse tissue distribution of ALG-094103 at 12 hours of post dosing of ALG-094103

ALG-094103 Demonstrates In Vivo Target Engagement in a **Humanized PD-L1 MC38 Subcutaneous Tumor Model**

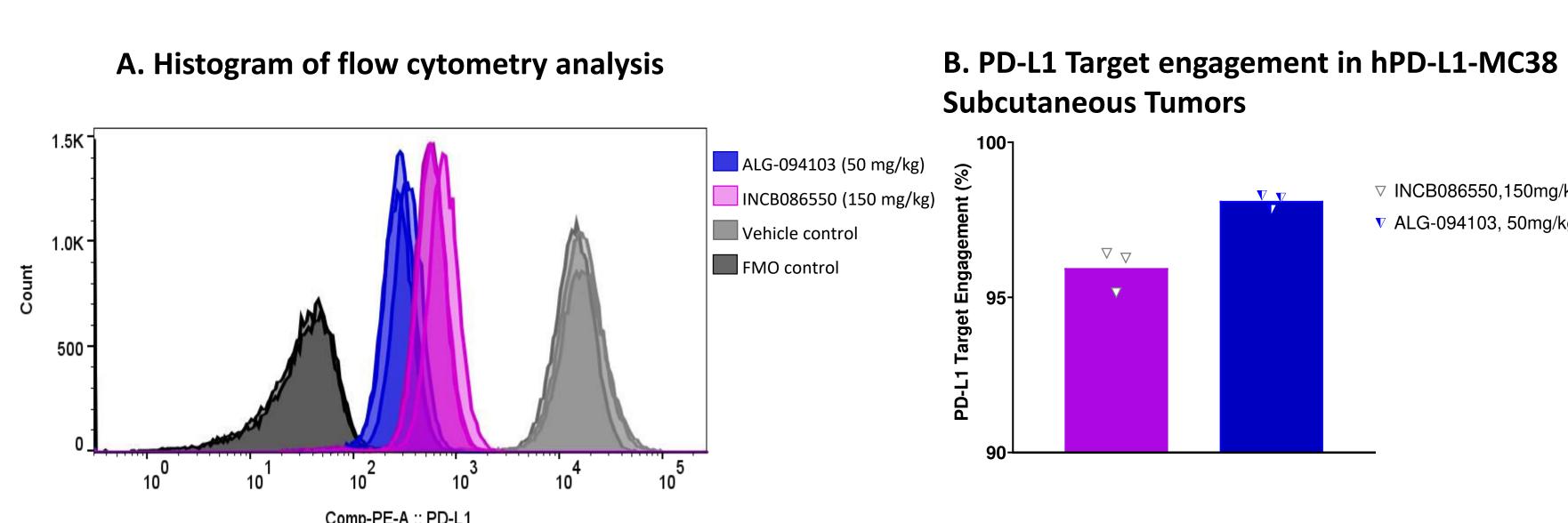


Figure 3: In vivo PD-L1 target occupancy of ALG-094103 in humanized-PD-L1 MC38 subcutaneous tumor hu-PD-L1 MC38 cells were implanted subcutaneously, and mice were dosed with vehicle or indicated

- compounds. A. Histogram of flow cytometry analysis of unoccupied h-PD-L1 on the cell surface
- B. PD-L1 Target engagement of 50 mg/kg ALG-094103 was more efficacious than 150 mg/kg INCB086550

ALG-094103 Has a Favorable In Vitro ADME Tox Profile

A. ALG-094103 in vitro ADME pro	i-094103 in vitro ADME profile		B. ALG-094103 in vitro Tox profile		
Caco-2 Papp (10 ⁻⁶ cm/s) A→B (ER)	1.1 (18.5)	hERG/NaV/CaV IC ₅₀ (μM)	All > 10		
Liver Microsomal Stability T _{1/2} (min) mouse/rat/dog/Monkey/human	All > 60	In Vitro Micronucleus Screening in TK6 cells	Negative		
CYP Inhibition @ 10 μM CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4	All < 20%	AMES Screening TA98, TA100, TA1535, TA97a, WP2 uvrA, pKM101	Negative		
CYP3A4 PXR Activation 0.1 μM, 1.0 μM, 10 μM	No activation	CEREP Safety Functional Panel	All > 10		
GSH Conjugation	No adduct	78 targets E/IC ₅₀ (μM)			
PPB (% bound) mouse/rat/dog/Monkey/human	96.06 -98.30	CEREP 58 Kinases at 10 μM	No significant inhibition		

Table 2: ALG-094103 in vitro ADME Tox profile

- Low potential for CYP450-Mediated DDIs
- Low potential for generating reactive metabolite
- > Low potential for cardiovascular safety liability, gene tox liability and other safety related off target effects

ALG-094103 Exhibits Favorable Pharmacokinetic Properties

	Rat		Monkey	
	IV	РО	IV	РО
Dose (mg/kg)	2.0	15	1.0	10
C ₀ or C _{max} (μΜ)	6.34	1.16	22.2	22.1
T _{max} (hour)	-	3.00		2.67
Cl_obs (mL/min/kg)	23.1	-	3.27	-
Vss_obs (L/kg)	1.82	-	0.63	-
t _{1/2} (hour)	1.06	2.08	3.78	4.63
AUC _{0-inf} (μM·hour)	2.33	6.97	9.26	106
Oral Bioavailability (F%)		40%		115%

Table 3: ALG-094103 pharmacokinetic parameters in rats and monkeys

ALG-094103 was formulated in 40% -60% PEG400 in water as a clear solution. PK was performed in male Wistar Han rat and cynomolgus monkey, fasted for IV.

Conclusion

We have discovered ALG-094103 as a novel liver-targeted and orally bioavailable PD-L1 small molecule inhibitor. The properties of ALG-094103 will be further evaluated as a potential candidate for drug development.