

Nonclinical Efficacy, Pharmacokinetic/Pharmacodynamic (PK/PD), and Toxicology Profile of ALG-055009, a Novel and Potent Thyroid Hormone Receptor ß Agonist, for the Treatment of **Metabolic Dysfunction-Associated Steatohepatitis (MASH)**

Dinah Misner¹, Kusum Gupta¹, Xuan Luong¹, Jerome Deval¹, Kha Le¹, Doug Clark¹, Dave McGowan², Matthew McClure¹, David B. Smith¹, Tse-I Lin², Julian A. Symons¹, Lawrence M. Blatt¹, Leonid N. Beigelman¹, and Sushmita Chanda¹

Publication Number: 2461-C

Background and Aims

MASH (formerly known as NASH) is characterized by hepatic inflammation/damage as a reaction to build-up of fat in the liver. Although no drugs are approved to treat NASH, thyroid hormone receptor β (THRβ) agonists have reduced liver fat, restored liver function and reversed inflammation/fibrosis in clinical trials. Here we present the preclinical development of ALG-055009, a second-generation THR^β agonist with improved potency and favorable selectivity.

Methods

ALG-055009 was profiled for in vitro efficacy, ADME, and toxicology assays, and in vivo Liver C_{min} pharmacokinetic studies across species. The in vitro efficacy was evaluated using three different $R^2 = 0.999$ methods: a cell-free LanthaScreen[™] time-resolved fluorescence energy transfer (TR-FRET) assay, Dio1 RNA a luciferase reporter assay in HEK293 cells, and a differential gene expression assay using Huh-7 in liver cells. The in vivo activity of ALG-055009 was evaluated in a diet induced obesity (DIO) mouse model where male C57BL/6J mice were fed with a high fat diet for 14 weeks, followed by once Fold-change in liver Dio1 RNA daily (QD) or twice daily (BID) oral administration of ALG-055009 for 28 days. Pharmacodynamic endpoints included total/LDL cholesterol, liver enzymes, and thyroid hormones. Liver and heart Dose proportional increases in plasma ALG-055009 AUC₀₋₂₄ exposures in dogs gene expression was determined by qPCR. Repeat-dose toxicology studies were conducted in rats and dogs, up to 13-weeks in duration, and clinical pathology endpoints including thyroid hormones were assessed at 2-, 6-, and 13-weeks, as well as following 2- to 4-weeks of recovery.

ALG-055009 is a potent and selective THR β agonist in vitro

	EC ₅₀ (nM)		THRβ Selectivity
	THRα	THRβ	(THRα EC ₅₀ /THRβ EC ₅₀)
Compound	THR Coactivator Biochemical Assay		
ALG-055009	360.4 ± 108.2	62.7 ± 42.5	5.7
VK2809A (active, parent)	25. 5 ± 7.0	10.1 ± 2.7	2.5
Resmetirom	933.8 ± 175.2	73.1 ± 9.3	12.8
	Luciferase Reporter Assay in HEK293T		
ALG-055009	191.1 ± 100.0	50.0 ± 12.6	3.8
VK2809A (active, parent)	297.4 ± 41.4	269.0 ± 30.9	1.1
Resmetirom	5927.4 ± 1117.6	2365.8 ± 689.5	2.5
	CPT1a Gene Expression Assay in Huh-7		
ALG-055009	8.8 ± 6.1		NA
VK2809A (active, parent)	8.3 ± 2.2		NA
Resmetirom	303.1 ± 50.9		NA

ALG-055009 demonstrated efficacy by lowering serum lipid content, while simultaneously increasing observed, overall indicating target engagement and suggesting target specificity.

¹Aligos Therapeutics, Inc., South San Francisco, CA; ²Aligos Belgium BV, Leuven, Belgium

ALG-055009 significantly decreases triglycerides in young healthy rats and dogs maintained on a *Dio1* liver expression. No modulation of key THR-regulated genes in the heart (data not shown) was and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 mg/kg/day in dogs (up to 52%) and in 13-week toxicology studies at doses ≥0.05 toxicology studies at 0.3 mg/kg/day (up to 67% in rats and 63% in dogs).

IGS*I***HERAPEUTICS**

Email: dmisner@aligos.com

atherogenic lipids. Multiple oral doses of ALG-055009 (0.3 – 1.0 mg solution) x 14 days demonstrated a favorable safety, PK and PD profile in subjects with hyperlipidemia, supporting evaluation of this dose range in a longer duration Phase 2 study of MASH patients (2900-A, AASLD 2023). This profile indicates ALG-055009 has the potential to be a best-in-class THR-β agonist for the treatment of MASH.

Financial disclosure: all authors are current or former employees of Aligos Therapeutics Inc.