

Discovery of a Liver Targeted Oral PD-L1 Small Molecule Inhibitor for the Treatment of Chronic Hepatitis B and Liver Cancer

Heleen Roose¹, Kristina Rekstyte-Matiene¹, Sarah Stevens², Kusum Gupta², Sandra Chang², Cheng Liu², Vladimir Serebryany², Lillian Adame², Kha Le², Antitsa Stoycheva², Lawrence M. Blatt², Leonid Beigelman², Sushmita Chanda², David B. Smith²,

Poster #: 1466-C

Background

PD-1/PD-L1 antibody-based therapies have demonstrated success in the treatment of liver cancer and have exhibited potential for achieving functional cure of chronic hepatitis B (CHB)¹. However, the systemic immune-related adverse events (irAEs) associated with PD-1/PD-L1 antibodies can be life threatening, due to their long half-lives. Compared to antibodies, the shorter half life of PD-L1 small molecule inhibitors (SMi) might bring advantages for managing irAEs. Recently, PD-L1 small molecule inhibitors have been developed, e.g., INCB086550 which demonstrated clinical response in cancer in a phase I study.²

Our first-generation liver targeted PD-L1 small molecule inhibitor, ALG-093702, activated PBMC from an HBV-infected patient ex vivo with similar activity to durvalumab and demonstrated in vivo antitumor efficacy in a human PD-L1 MC38 subcutaneous mouse model. Further optimization led to our next generation liver targeted PD-L1 SMi, ALG-094103, which has similar in vitro potency to ALG-093702 with excellent oral bioavailability.

Methods

The biochemical interaction of PD-1/PD-L1 and PD-L1 dimerization was assessed by AlphaLISA[®]. Cellular activity was measured using a co-culture reporter assay in which TCR-mediated NFAT activity of Jurkat T cells is constitutively inhibited by the engagement of PD-1 by PD-L1 expressing CHO cells. T cell viability was assessed in Jurkat T cells using Cell Titer Blue. Pharmacokinetic (PK) and tissue distribution studies were performed in C57BL/6 mice and PK in Wistar Han rats and Cynomolgus monkey. Percentage target engagement and cell surface PD-L1 reduction was calculated using median fluorescent intensity compared with an untreated control. In vivo PD-L1 target occupancy was assessed 6 hours following a single oral dose in a humanized-PD-L1 MC38 subcutaneous mouse model.

ALG-094103 is a Potent and Selective PD-L1 Small Molecule Inhibitor

Biochemical activity	Nivolumab	Durvalumab	INCB086550	ALG-094103
	PD-1 antibody	PD-L1 antibody	PD-L1 SMi	PD-L1 SMi
Human PD-1/PD-L1 Interaction	0.159	0.025	0.043	0.012
IC ₅₀ (nM)	(n=2)	(n=2)	(n=3)	(n=3)
Human PD-L1 Dimerization EC ₅₀ (nM)	No dimerization	No dimerization	63 (n=3)	143 (n=3)

ICAI ACTIVILIES OI ALG-U341U3 VS. FDA-APPIOVEU FD-L1 AIILINUUIES AIIU IIVCDUODJJU

Figure 1. Cellular activities of ALG-094103 vs. FDA-approved PD-L1 antibodies and INCB086550

Julian A. Symons², Andreas Jekle², Tongfei Wu¹

¹Aligos Belgium BV, Leuven, Belgium; ²Aligos Therapeutics, Inc., South San Francisco, CA, USA; Contact emails: hroose@aligos.com; twu@aligos.com

Target Occupancy EC ₅₀ (nM)	0.18
PD-L1 Cell Surface Reduction EC ₅₀ (nM)	No eff

Figure 2: Effect of ALG-094103 vs. FDA-approved PD-L1 antibodies on PD-L1 cell surface expression PD-L1-expressing CHO cells were incubated for 24 hours in presence of PD-L1 inhibitors. PD-L1 target engagement (A) and PD-L1 cell surface expression (B) were assessed by flow cytometry using competitive MIH1 and non-competitive 28.8 anti-PDL1 antibodies, respectively.

ALG-094103 Exhibits Liver Targeted Tissue Distribution

A. Mouse Plasma	B. Mous	
		35000
	ALG-094103	28000
PO Dose (mg/kg)	50	<u>کے</u> 21000
C _{max} (μM)	21.1	ວິ 0 14000
T _{max} (hour)	0.50	7000
AUC _{0-12hr} (μM.hour)	82.5	0

Figure 3: Mean plasma and tissue concentrations of ALG-094103 in C57BL/6 mice A. Mouse PK parameters following a single oral dose of ALG-094103

B. Mouse tissue distribution of ALG-094103 at 12 hours of post dosing of ALG-094103

ALG-094103 Demonstrates In Vivo Target Occupancy in Humanized PD-L1 MC38 Subcutaneous Tumor Model

Figure 4: In vivo PD-L1 target occupancy of ALG-094103 in humanized-PD-L1 MC38 subcutaneous tumor hu-PD-L1 MC38 cells were implanted subcutaneously, and mice were dosed with vehicle or indicated compounds.

A. Histogram of flow cytometry analysis of unoccupied h-PD-L1 on the cell surface B. PD-L1 target engagement of 50 mg/kg ALG-094103 was more efficacious than 150 mg/kg INCB086550

ALG-094103 Binds Cellular PD-L1 and Reduces Cell Surface PD-L1

A. Cellular PD-L1 Target Occupancy Flow cytometry using competitive MIH1 PD-L1 antibody

No effect

B. Cell Surface PD-L1 Reduction

Flow cytometry using non-competitive 28.8 PD-L1 antibody

se Tissue Distribution at 12 hours of Post Dosing

ALG-094103 has a Favorable In Vitro ADME Tox Profile

A. ALG-094103 in vi

Caco-2 Papp (10⁻⁶ cm/s) $A \rightarrow B$ (Efflux Ratio)

Liver microsomal stability mouse/rat/dog/monkey/

CYP inhibition @ 10 µM CYP1A2, 2B6, 2C8, 2C9, 20

CYP3A4 PXR Activation 0.1 μΜ, 1.0 μΜ, 10 μΜ

GSH conjugation

PPB (% bound) mouse/rat/dog/monkey

Table 2: ALG-094103's in vitro ADME Tox profile

- effects

ALG-094103 Exhibits Favorable Pharmacokinetic Properties

Dose (mg/k

C₀ or C_{max} (μM)

T_{max} (hour)

Cl_obs (mL/min/kg)

Vss_obs (L/kg)

t_{1/2} (hour)

AUC_{0-inf} (μM·hour)

Oral Bioavailability (F%)

Conclusion We have discovered ALG-094103 as a novel liver-targeted and orally bioavailable PD-L1 small molecule inhibitor. The properties of ALG-094103 will be further evaluated as a potential candidate for drug development.

Disclosure: Authors are employees of Aligos Therapeutics, Inc.

1. Guiqiang Wang et. al, Abstract #OS091, The International Liver Congress™ EASL – European Association for the Study of the Liver, June 22-26, 2022 2. Koblish HK, Wu L, Wang LS, et al. Characterization of INCB086550: A Potent and Novel Small-Molecule PD-L1 Inhibitor. Cancer Discov. 2022;12(6):1482-1499. doi:10.1158/2159-8290.CD-21-1156

ALIGOS THERAPEUTICS

itro ADME profile		B. ALG-094103 in vitro Tox profile		
	1.1 (18.5)	hERG/NaV/CaV IC ₅₀ (μM)	All > 10	
/ T _{1/2} (min) /human	All > 60	In vitro micronucleus screening in TK6 cells	Negative	
C19, 2D6, 3A4	All < 20%	AMES screening	Negative	
	No activation No adduct	CEREP safety functional panel 78 targets E/IC ₅₀ (μM)	All > 10	
/human	96.06 -98.30	CEREP 58 Kinases at 10 µM	No significant inhibition	

Low potential CYP450-mediated DDIs

Low potential for generating reactive metabolites

> Low potential for cardiovascular safety liability, genotoxicity and other safety related off target

	Rat		Monkey		
	IV	РО	IV	ΡΟ	
)	2.0	15	1.0	10	
	6.34	1.16	22.2	22.1	
	-	3.00		2.67	
	23.1	-	3.27	-	
	1.82	-	0.63	-	
	1.06	2.08	3.78	4.63	
	2.33	6.97	9.26	106	
		40%		115%	

Table 3: ALG-094103 pharmacokinetic parameters in rats and monkeys

ALG-094103 was formulated in 40% -60% PEG400 in water as a clear solution.

PK was performed in male Wistar Han rat and cynomolgus monkey, fasted for IV.